基于粒子群算法的垂直参考飞行轨迹优化

IF 0.7 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
A. Murrieta-Mendoza, Hugo Ruiz, R. Botez
{"title":"基于粒子群算法的垂直参考飞行轨迹优化","authors":"A. Murrieta-Mendoza, Hugo Ruiz, R. Botez","doi":"10.2316/P.2017.848-032","DOIUrl":null,"url":null,"abstract":"The consumption of fossil fuels in order to power flights leads to undesirable pollution particles to be released to the atmosphere. Fuel also represents an important expense for airlines. For these reasons, it is of interest to reduce fuel burn for a given flight. In this article, the altitudes followed by a commercial aircraft during the cruise phase of a flight, also called vertical reference trajectory, were optimized in terms of fuel burn. The airspace was modelled under the form of a unidirectional graph. Fuel burn was computed using a numerical performance model. The weather forecast was obtained from the model delivered by Environment Canada. The selection of waypoints where to execute the changes in altitudes that provided the most economical flight cost in terms of fuel burn was determined using the particle swarm optimisation (PSO) algorithm. The trajectories provided by the algorithm developed in this paper were compared against simple geodesic trajectories to validate its optimization potential, and against as flown trajectories. Results have showed that up to 6.5% of fuel burn can be saved comparing against simple trajectories, and up to 3.1% was optimized comparing against as flown trajectories.","PeriodicalId":49801,"journal":{"name":"Modeling Identification and Control","volume":"45 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Vertical Reference Flight Trajectory Optimization with the Particle Swarm Optimisation\",\"authors\":\"A. Murrieta-Mendoza, Hugo Ruiz, R. Botez\",\"doi\":\"10.2316/P.2017.848-032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The consumption of fossil fuels in order to power flights leads to undesirable pollution particles to be released to the atmosphere. Fuel also represents an important expense for airlines. For these reasons, it is of interest to reduce fuel burn for a given flight. In this article, the altitudes followed by a commercial aircraft during the cruise phase of a flight, also called vertical reference trajectory, were optimized in terms of fuel burn. The airspace was modelled under the form of a unidirectional graph. Fuel burn was computed using a numerical performance model. The weather forecast was obtained from the model delivered by Environment Canada. The selection of waypoints where to execute the changes in altitudes that provided the most economical flight cost in terms of fuel burn was determined using the particle swarm optimisation (PSO) algorithm. The trajectories provided by the algorithm developed in this paper were compared against simple geodesic trajectories to validate its optimization potential, and against as flown trajectories. Results have showed that up to 6.5% of fuel burn can be saved comparing against simple trajectories, and up to 3.1% was optimized comparing against as flown trajectories.\",\"PeriodicalId\":49801,\"journal\":{\"name\":\"Modeling Identification and Control\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modeling Identification and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2316/P.2017.848-032\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling Identification and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2316/P.2017.848-032","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 6

摘要

为了给飞机提供动力而消耗化石燃料会导致不受欢迎的污染颗粒被释放到大气中。燃油也是航空公司的一项重要支出。由于这些原因,减少一次飞行的燃油消耗是很有意义的。在本文中,商用飞机在飞行巡航阶段所遵循的高度,也称为垂直参考轨迹,在燃油消耗方面进行了优化。空域以单向图的形式建模。采用数值性能模型计算燃料燃烧。天气预报是从加拿大环境部提供的模型中获得的。使用粒子群优化(PSO)算法确定了执行高度变化的航路点的选择,以提供最经济的燃油消耗飞行成本。将该算法提供的轨迹与简单测地线轨迹进行了比较,以验证其优化潜力,并与飞行轨迹进行了比较。结果表明,与简单轨迹相比,可节省6.5%的燃油消耗,与飞行轨迹相比,可节省3.1%的燃油消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vertical Reference Flight Trajectory Optimization with the Particle Swarm Optimisation
The consumption of fossil fuels in order to power flights leads to undesirable pollution particles to be released to the atmosphere. Fuel also represents an important expense for airlines. For these reasons, it is of interest to reduce fuel burn for a given flight. In this article, the altitudes followed by a commercial aircraft during the cruise phase of a flight, also called vertical reference trajectory, were optimized in terms of fuel burn. The airspace was modelled under the form of a unidirectional graph. Fuel burn was computed using a numerical performance model. The weather forecast was obtained from the model delivered by Environment Canada. The selection of waypoints where to execute the changes in altitudes that provided the most economical flight cost in terms of fuel burn was determined using the particle swarm optimisation (PSO) algorithm. The trajectories provided by the algorithm developed in this paper were compared against simple geodesic trajectories to validate its optimization potential, and against as flown trajectories. Results have showed that up to 6.5% of fuel burn can be saved comparing against simple trajectories, and up to 3.1% was optimized comparing against as flown trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modeling Identification and Control
Modeling Identification and Control 工程技术-计算机:控制论
CiteScore
3.30
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: The aim of MIC is to present Nordic research activities in the field of modeling, identification and control to the international scientific community. Historically, the articles published in MIC presented the results of research carried out in Norway, or sponsored primarily by a Norwegian institution. Since 2009 the journal also accepts papers from the other Nordic countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信