聚琥珀酸亚烯的热稳定性及分解机理

Macromol Pub Date : 2022-02-01 DOI:10.3390/macromol2010004
Rizos Bikiaris, N. Ainali, Evi Christodoulou, N. Nikolaidis, D. Lambropoulou, G. Papageorgiou
{"title":"聚琥珀酸亚烯的热稳定性及分解机理","authors":"Rizos Bikiaris, N. Ainali, Evi Christodoulou, N. Nikolaidis, D. Lambropoulou, G. Papageorgiou","doi":"10.3390/macromol2010004","DOIUrl":null,"url":null,"abstract":"In the present study, a series of aliphatic polyesters based on succinic acid and several diols with 2, 4, 6, 8, and 10 methylene groups, namely poly(ethylene succinate) (PESu), poly(butylene succinate) (PBSu), poly(hexylene succinate) (PHSu), poly(octylene succinate) (POSu), and poly(decylene succinate) (PDeSu), were prepared via a two-stage melt polycondensation method. All polyesters were semicrystalline materials with Tm ranging from 64.2 to 117.8 °C, while their Tg values were progressively decreasing by increasing the methylene group number in the used diols. Thermogravimetric analysis (TGA) revealed that the synthesized poly(alkylene succinate)s present high thermal stability with maximum decomposition rates at temperatures 420–430 °C. The thermal decomposition mechanism was also evaluated with the aid of Pyrolysis–Gas chromatography/Mass spectrometry (Py–GC/MS), proving that all the studied polyesters decompose via a similar pathway, with degradation taking place mainly via β–hydrogen bond scission and less extensive with homolytic scission.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Thermal Stability and Decomposition Mechanism of Poly(alkylene succinate)s\",\"authors\":\"Rizos Bikiaris, N. Ainali, Evi Christodoulou, N. Nikolaidis, D. Lambropoulou, G. Papageorgiou\",\"doi\":\"10.3390/macromol2010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, a series of aliphatic polyesters based on succinic acid and several diols with 2, 4, 6, 8, and 10 methylene groups, namely poly(ethylene succinate) (PESu), poly(butylene succinate) (PBSu), poly(hexylene succinate) (PHSu), poly(octylene succinate) (POSu), and poly(decylene succinate) (PDeSu), were prepared via a two-stage melt polycondensation method. All polyesters were semicrystalline materials with Tm ranging from 64.2 to 117.8 °C, while their Tg values were progressively decreasing by increasing the methylene group number in the used diols. Thermogravimetric analysis (TGA) revealed that the synthesized poly(alkylene succinate)s present high thermal stability with maximum decomposition rates at temperatures 420–430 °C. The thermal decomposition mechanism was also evaluated with the aid of Pyrolysis–Gas chromatography/Mass spectrometry (Py–GC/MS), proving that all the studied polyesters decompose via a similar pathway, with degradation taking place mainly via β–hydrogen bond scission and less extensive with homolytic scission.\",\"PeriodicalId\":18139,\"journal\":{\"name\":\"Macromol\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/macromol2010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol2010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究采用两段熔融缩聚法制备了一系列以琥珀酸和几种亚甲基为2,4,6,8和10基团的二醇为基础的脂肪族聚酯,即聚琥珀酸乙酯(PESu)、聚琥珀酸丁二烯(PBSu)、聚琥珀酸己烯(PHSu)、聚琥珀酸辛二烯(POSu)和聚琥珀酸癸二烯(PDeSu)。所有聚酯均为半结晶材料,其Tm在64.2 ~ 117.8℃范围内,其Tg值随着所用二醇中亚甲基数目的增加而逐渐降低。热重分析(TGA)表明,合成的聚琥珀酸亚烯具有较高的热稳定性,在420 ~ 430℃时分解率最高。通过热解-气相色谱/质谱分析(Py-GC /MS)对其热分解机理进行了评价,证实了所研究的聚酯的热分解途径相似,降解主要通过β -氢键裂解进行,均解裂解较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Stability and Decomposition Mechanism of Poly(alkylene succinate)s
In the present study, a series of aliphatic polyesters based on succinic acid and several diols with 2, 4, 6, 8, and 10 methylene groups, namely poly(ethylene succinate) (PESu), poly(butylene succinate) (PBSu), poly(hexylene succinate) (PHSu), poly(octylene succinate) (POSu), and poly(decylene succinate) (PDeSu), were prepared via a two-stage melt polycondensation method. All polyesters were semicrystalline materials with Tm ranging from 64.2 to 117.8 °C, while their Tg values were progressively decreasing by increasing the methylene group number in the used diols. Thermogravimetric analysis (TGA) revealed that the synthesized poly(alkylene succinate)s present high thermal stability with maximum decomposition rates at temperatures 420–430 °C. The thermal decomposition mechanism was also evaluated with the aid of Pyrolysis–Gas chromatography/Mass spectrometry (Py–GC/MS), proving that all the studied polyesters decompose via a similar pathway, with degradation taking place mainly via β–hydrogen bond scission and less extensive with homolytic scission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信