最小加权范数与核插值的泛化误差

IF 1.9 Q1 MATHEMATICS, APPLIED
Weilin Li
{"title":"最小加权范数与核插值的泛化误差","authors":"Weilin Li","doi":"10.1137/20M1359912","DOIUrl":null,"url":null,"abstract":"We study the generalization error of functions that interpolate prescribed data points and are selected by minimizing a weighted norm. Under natural and general conditions, we prove that both the interpolants and their generalization errors converge as the number of parameters grow, and the limiting interpolant belongs to a reproducing kernel Hilbert space. This rigorously establishes an implicit bias of minimum weighted norm interpolation and explains why norm minimization may benefit from over-parameterization. As special cases of this theory, we study interpolation by trigonometric polynomials and spherical harmonics. Our approach is from a deterministic and approximation theory viewpoint, as opposed a statistical or random matrix one.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"199 1","pages":"414-438"},"PeriodicalIF":1.9000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Generalization error of minimum weighted norm and kernel interpolation\",\"authors\":\"Weilin Li\",\"doi\":\"10.1137/20M1359912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the generalization error of functions that interpolate prescribed data points and are selected by minimizing a weighted norm. Under natural and general conditions, we prove that both the interpolants and their generalization errors converge as the number of parameters grow, and the limiting interpolant belongs to a reproducing kernel Hilbert space. This rigorously establishes an implicit bias of minimum weighted norm interpolation and explains why norm minimization may benefit from over-parameterization. As special cases of this theory, we study interpolation by trigonometric polynomials and spherical harmonics. Our approach is from a deterministic and approximation theory viewpoint, as opposed a statistical or random matrix one.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"199 1\",\"pages\":\"414-438\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20M1359912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20M1359912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了插值指定数据点的函数的泛化误差,并通过最小化加权范数来选择。在自然条件和一般条件下,我们证明了插值量及其泛化误差随着参数数目的增加而收敛,并且证明了极限插值量属于可复制核Hilbert空间。这严格地建立了最小加权范数插值的隐式偏差,并解释了为什么范数最小化可能受益于过度参数化。作为该理论的特例,我们研究了三角多项式和球谐插值。我们的方法是从确定性和近似理论的观点出发,而不是从统计或随机矩阵的观点出发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization error of minimum weighted norm and kernel interpolation
We study the generalization error of functions that interpolate prescribed data points and are selected by minimizing a weighted norm. Under natural and general conditions, we prove that both the interpolants and their generalization errors converge as the number of parameters grow, and the limiting interpolant belongs to a reproducing kernel Hilbert space. This rigorously establishes an implicit bias of minimum weighted norm interpolation and explains why norm minimization may benefit from over-parameterization. As special cases of this theory, we study interpolation by trigonometric polynomials and spherical harmonics. Our approach is from a deterministic and approximation theory viewpoint, as opposed a statistical or random matrix one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信