{"title":"一种受袋鼠启发的无约束跳跃机器人设计及控制器开发","authors":"Austin Curtis, James A. Mynderse, H. Vejdani","doi":"10.1115/dscc2019-9083","DOIUrl":null,"url":null,"abstract":"\n Inspired by the agility and maneuverability of running kangaroos, a prototype robot was developed using a reduced order model to constrain the system. Both passive and active models were used to understand the relationship between system parameters and gait performance. A frequency response experiment was performed on the prototype to quantify the relationship between design parameters and system responses. Additionally, preliminary tail controllers were tested. Based on the results of the initial platform, a new robot was designed and built as a platform for the study of three dimensional hopping.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Kangaroo Inspired Hopping Robot for Unrestricted Locomotion and Controller Development\",\"authors\":\"Austin Curtis, James A. Mynderse, H. Vejdani\",\"doi\":\"10.1115/dscc2019-9083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Inspired by the agility and maneuverability of running kangaroos, a prototype robot was developed using a reduced order model to constrain the system. Both passive and active models were used to understand the relationship between system parameters and gait performance. A frequency response experiment was performed on the prototype to quantify the relationship between design parameters and system responses. Additionally, preliminary tail controllers were tested. Based on the results of the initial platform, a new robot was designed and built as a platform for the study of three dimensional hopping.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Design of a Kangaroo Inspired Hopping Robot for Unrestricted Locomotion and Controller Development
Inspired by the agility and maneuverability of running kangaroos, a prototype robot was developed using a reduced order model to constrain the system. Both passive and active models were used to understand the relationship between system parameters and gait performance. A frequency response experiment was performed on the prototype to quantify the relationship between design parameters and system responses. Additionally, preliminary tail controllers were tested. Based on the results of the initial platform, a new robot was designed and built as a platform for the study of three dimensional hopping.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.