稀疏分布计算的优化

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
O. Hamdi-Larbi
{"title":"稀疏分布计算的优化","authors":"O. Hamdi-Larbi","doi":"10.4018/ijghpc.301586","DOIUrl":null,"url":null,"abstract":"We address the problem of the optimization of sparse matrix-vector product (SpMV) on homogeneous distributed systems. For this purpose, we propose three approaches based on partitioning the matrix into row blocks. These blocks are defined by a set of a fixed number of rows and a set of contiguous (resp. non-contiguous) rows containing a fixed number of non-zero elements. These approaches lead to solve some specific NP-hard scheduling problems. Thus, adequate heuristics are designed. We analyse the theoretical performance of the proposed approaches and validate them by a series of experiments. This work represents an important step in an overall objective which is to determine the best-balanced distribution for the SpMV computation on a distributed system. In order to validate our approaches for sparse matrix distribution, we compare them to hypergraph model as well as to PETSc library for SpMV distribution on a homogenous multicore cluster. Experimentations show that our approaches provide performances 2 times better than hypergraph and 49 times better than PETSc.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"5 1","pages":"1-18"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of Sparse Distributed Computations\",\"authors\":\"O. Hamdi-Larbi\",\"doi\":\"10.4018/ijghpc.301586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of the optimization of sparse matrix-vector product (SpMV) on homogeneous distributed systems. For this purpose, we propose three approaches based on partitioning the matrix into row blocks. These blocks are defined by a set of a fixed number of rows and a set of contiguous (resp. non-contiguous) rows containing a fixed number of non-zero elements. These approaches lead to solve some specific NP-hard scheduling problems. Thus, adequate heuristics are designed. We analyse the theoretical performance of the proposed approaches and validate them by a series of experiments. This work represents an important step in an overall objective which is to determine the best-balanced distribution for the SpMV computation on a distributed system. In order to validate our approaches for sparse matrix distribution, we compare them to hypergraph model as well as to PETSc library for SpMV distribution on a homogenous multicore cluster. Experimentations show that our approaches provide performances 2 times better than hypergraph and 49 times better than PETSc.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"5 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijghpc.301586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.301586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

研究了齐次分布系统上稀疏矩阵向量积(SpMV)的优化问题。为此,我们提出了基于将矩阵划分为行块的三种方法。这些块由一组固定数量的行和一组连续的(对应的)数据块定义。包含固定数量的非零元素的非连续行。这些方法可以解决一些特定的NP-hard调度问题。因此,设计了适当的启发式。我们分析了所提出的方法的理论性能,并通过一系列实验验证了它们。这项工作代表了确定分布式系统上SpMV计算的最佳平衡分布这一总体目标的重要一步。为了验证我们的稀疏矩阵分布方法,我们将它们与超图模型以及PETSc库在同质多核集群上的SpMV分布进行了比较。实验表明,我们的方法的性能比hypergraph好2倍,比PETSc好49倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Sparse Distributed Computations
We address the problem of the optimization of sparse matrix-vector product (SpMV) on homogeneous distributed systems. For this purpose, we propose three approaches based on partitioning the matrix into row blocks. These blocks are defined by a set of a fixed number of rows and a set of contiguous (resp. non-contiguous) rows containing a fixed number of non-zero elements. These approaches lead to solve some specific NP-hard scheduling problems. Thus, adequate heuristics are designed. We analyse the theoretical performance of the proposed approaches and validate them by a series of experiments. This work represents an important step in an overall objective which is to determine the best-balanced distribution for the SpMV computation on a distributed system. In order to validate our approaches for sparse matrix distribution, we compare them to hypergraph model as well as to PETSc library for SpMV distribution on a homogenous multicore cluster. Experimentations show that our approaches provide performances 2 times better than hypergraph and 49 times better than PETSc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信