D. Vidhate
{"title":"协同多智能体联合行动学习算法在零售商店决策中的应用","authors":"D. Vidhate","doi":"10.4018/IJATS.2017010101","DOIUrl":null,"url":null,"abstract":"Thisarticlegivesanovelapproachtocooperativedecision-makingalgorithmsbyJoint Actionlearningfortheretailshopapplication.Accordingly,thisapproachpresents three retailer stores in the retailmarketplace.Retailers canhelp to eachother and canobtainprofitfromcooperationknowledgethroughlearningtheirownstrategies thatjuststandfortheiraimsandbenefit.Thevendorsaretheknowledgeableagents toemploycooperativelearningtotraininthecircumstances.Assumingasignificant hypothesison thevendor’s stockpolicy, restockperiod, andarrivalprocessof the consumers,theapproachwasformedasaMarkovmodel.Theproposedalgorithms learndynamicconsumerperformance.Moreover,thearticleillustratestheresultsof cooperativereinforcementlearningalgorithmsbyjointactionlearningofthreeshop agentsfortheperiodofone-yearsaleduration.Twoapproacheshavebeencompared inthearticle,i.e.multi-agentQLearningandjointactionlearning. KeywoRDS Consumer Behavior, Cooperative Learning, Joint Action Learning, Reinforcement Learning","PeriodicalId":93648,"journal":{"name":"International journal of agent technologies and systems","volume":"5 1","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative Multi-Agent Joint Action Learning Algorithm (CMJAL) for Decision Making in Retail Shop Application\",\"authors\":\"D. Vidhate\",\"doi\":\"10.4018/IJATS.2017010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thisarticlegivesanovelapproachtocooperativedecision-makingalgorithmsbyJoint Actionlearningfortheretailshopapplication.Accordingly,thisapproachpresents three retailer stores in the retailmarketplace.Retailers canhelp to eachother and canobtainprofitfromcooperationknowledgethroughlearningtheirownstrategies thatjuststandfortheiraimsandbenefit.Thevendorsaretheknowledgeableagents toemploycooperativelearningtotraininthecircumstances.Assumingasignificant hypothesison thevendor’s stockpolicy, restockperiod, andarrivalprocessof the consumers,theapproachwasformedasaMarkovmodel.Theproposedalgorithms learndynamicconsumerperformance.Moreover,thearticleillustratestheresultsof cooperativereinforcementlearningalgorithmsbyjointactionlearningofthreeshop agentsfortheperiodofone-yearsaleduration.Twoapproacheshavebeencompared inthearticle,i.e.multi-agentQLearningandjointactionlearning. KeywoRDS Consumer Behavior, Cooperative Learning, Joint Action Learning, Reinforcement Learning\",\"PeriodicalId\":93648,\"journal\":{\"name\":\"International journal of agent technologies and systems\",\"volume\":\"5 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of agent technologies and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJATS.2017010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of agent technologies and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJATS.2017010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Cooperative Multi-Agent Joint Action Learning Algorithm (CMJAL) for Decision Making in Retail Shop Application
Thisarticlegivesanovelapproachtocooperativedecision-makingalgorithmsbyJoint Actionlearningfortheretailshopapplication.Accordingly,thisapproachpresents three retailer stores in the retailmarketplace.Retailers canhelp to eachother and canobtainprofitfromcooperationknowledgethroughlearningtheirownstrategies thatjuststandfortheiraimsandbenefit.Thevendorsaretheknowledgeableagents toemploycooperativelearningtotraininthecircumstances.Assumingasignificant hypothesison thevendor’s stockpolicy, restockperiod, andarrivalprocessof the consumers,theapproachwasformedasaMarkovmodel.Theproposedalgorithms learndynamicconsumerperformance.Moreover,thearticleillustratestheresultsof cooperativereinforcementlearningalgorithmsbyjointactionlearningofthreeshop agentsfortheperiodofone-yearsaleduration.Twoapproacheshavebeencompared inthearticle,i.e.multi-agentQLearningandjointactionlearning. KeywoRDS Consumer Behavior, Cooperative Learning, Joint Action Learning, Reinforcement Learning