基于椭圆和直线轮廓的广播摄像机鲁棒标定

S. Croci, N. Stefanoski, A. Smolic
{"title":"基于椭圆和直线轮廓的广播摄像机鲁棒标定","authors":"S. Croci, N. Stefanoski, A. Smolic","doi":"10.1109/ICIP.2016.7532377","DOIUrl":null,"url":null,"abstract":"Professional TV studio footage often poses specific challenges to camera calibration due to lack of features and complex camera operation. As available algorithms often fail, we propose a novel approach based on robust tracking of ellipse and line features of a predefined logo. We further devise a predictive and iterative estimation algorithm, which incorporates confidence measures and filtering. Our results validate accuracy and reliability of our approach, demonstrated with challenging professional footage.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"24 1","pages":"350-354"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust calibration of broadcast cameras based on ellipse and line contours\",\"authors\":\"S. Croci, N. Stefanoski, A. Smolic\",\"doi\":\"10.1109/ICIP.2016.7532377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Professional TV studio footage often poses specific challenges to camera calibration due to lack of features and complex camera operation. As available algorithms often fail, we propose a novel approach based on robust tracking of ellipse and line features of a predefined logo. We further devise a predictive and iterative estimation algorithm, which incorporates confidence measures and filtering. Our results validate accuracy and reliability of our approach, demonstrated with challenging professional footage.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"24 1\",\"pages\":\"350-354\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏功能和复杂的摄像机操作,专业电视演播室的镜头经常给摄像机校准带来特定的挑战。由于现有的算法经常失败,我们提出了一种基于鲁棒跟踪的椭圆和直线特征的新方法。我们进一步设计了一种结合置信度和滤波的预测迭代估计算法。我们的结果验证了我们的方法的准确性和可靠性,并展示了具有挑战性的专业镜头。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust calibration of broadcast cameras based on ellipse and line contours
Professional TV studio footage often poses specific challenges to camera calibration due to lack of features and complex camera operation. As available algorithms often fail, we propose a novel approach based on robust tracking of ellipse and line features of a predefined logo. We further devise a predictive and iterative estimation algorithm, which incorporates confidence measures and filtering. Our results validate accuracy and reliability of our approach, demonstrated with challenging professional footage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信