Yue Liu, Huayu Xu, Ming Dong, Renhou Han, J. Tao, Rongrong Bao, Caofeng Pan
{"title":"高灵敏度可穿戴压力传感器,具有宽传感范围,由类似皮肤表面的3D图案交织结构实现","authors":"Yue Liu, Huayu Xu, Ming Dong, Renhou Han, J. Tao, Rongrong Bao, Caofeng Pan","doi":"10.1002/admt.202200504","DOIUrl":null,"url":null,"abstract":"Flexible electronic equipment is an emerging field in recent years, which attaches more attention to be researched and applied in health monitoring and human–machine interface. However, for the existing pressure sensors, even a very slight pressure will greatly reduce their sensitivity, so it is an urgent problem to be solved for achieving high sensitivity and wide application range simultaneously. Hence, a high‐performance piezoresistive pressure sensor based on PAN nanofiber films (PAN NFs) and MXene (Ti3C2Tx) is proposed. The realization of high sensitivity and wide sensing range is based on the microstructure of accordion‐like MXene and the macrostructure of fluffy porous blowing spinning PAN nanofibers, which exhibits a high sensitivity of 81.89 kPa−1 over a wide sensing range of 0.83–38.13 kPa and the dynamic responses to external pressures can reach 98.73 kPa. The pressure sensors based on skin surface‐like 3D patterned interwoven structure are used for health monitoring and tiny pressure detecting. Moreover, the application in human–machine interface is demonstrated. Additionally, to meet the requirement of long‐term wearing, the structure of the sensor is optimized and endowed with excellent breathability and conformal properties, which promotes the further development of flexible electronic equipment.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Highly Sensitive Wearable Pressure Sensor Over a Wide Sensing Range Enabled by the Skin Surface‐Like 3D Patterned Interwoven Structure\",\"authors\":\"Yue Liu, Huayu Xu, Ming Dong, Renhou Han, J. Tao, Rongrong Bao, Caofeng Pan\",\"doi\":\"10.1002/admt.202200504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible electronic equipment is an emerging field in recent years, which attaches more attention to be researched and applied in health monitoring and human–machine interface. However, for the existing pressure sensors, even a very slight pressure will greatly reduce their sensitivity, so it is an urgent problem to be solved for achieving high sensitivity and wide application range simultaneously. Hence, a high‐performance piezoresistive pressure sensor based on PAN nanofiber films (PAN NFs) and MXene (Ti3C2Tx) is proposed. The realization of high sensitivity and wide sensing range is based on the microstructure of accordion‐like MXene and the macrostructure of fluffy porous blowing spinning PAN nanofibers, which exhibits a high sensitivity of 81.89 kPa−1 over a wide sensing range of 0.83–38.13 kPa and the dynamic responses to external pressures can reach 98.73 kPa. The pressure sensors based on skin surface‐like 3D patterned interwoven structure are used for health monitoring and tiny pressure detecting. Moreover, the application in human–machine interface is demonstrated. Additionally, to meet the requirement of long‐term wearing, the structure of the sensor is optimized and endowed with excellent breathability and conformal properties, which promotes the further development of flexible electronic equipment.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202200504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202200504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Highly Sensitive Wearable Pressure Sensor Over a Wide Sensing Range Enabled by the Skin Surface‐Like 3D Patterned Interwoven Structure
Flexible electronic equipment is an emerging field in recent years, which attaches more attention to be researched and applied in health monitoring and human–machine interface. However, for the existing pressure sensors, even a very slight pressure will greatly reduce their sensitivity, so it is an urgent problem to be solved for achieving high sensitivity and wide application range simultaneously. Hence, a high‐performance piezoresistive pressure sensor based on PAN nanofiber films (PAN NFs) and MXene (Ti3C2Tx) is proposed. The realization of high sensitivity and wide sensing range is based on the microstructure of accordion‐like MXene and the macrostructure of fluffy porous blowing spinning PAN nanofibers, which exhibits a high sensitivity of 81.89 kPa−1 over a wide sensing range of 0.83–38.13 kPa and the dynamic responses to external pressures can reach 98.73 kPa. The pressure sensors based on skin surface‐like 3D patterned interwoven structure are used for health monitoring and tiny pressure detecting. Moreover, the application in human–machine interface is demonstrated. Additionally, to meet the requirement of long‐term wearing, the structure of the sensor is optimized and endowed with excellent breathability and conformal properties, which promotes the further development of flexible electronic equipment.