多资产做市中的封闭逼近

Q3 Mathematics
Philippe Bergault, David Evangelista, Olivier Gu'eant, Douglas A. G. Vieira
{"title":"多资产做市中的封闭逼近","authors":"Philippe Bergault, David Evangelista, Olivier Gu'eant, Douglas A. G. Vieira","doi":"10.1080/1350486X.2021.1949359","DOIUrl":null,"url":null,"abstract":"ABSTRACT A large proportion of market making models derive from the seminal model of Avellaneda and Stoikov. The numerical approximation of the value function and the optimal quotes in these models remains a challenge when the number of assets is large. In this article, we propose closed-form approximations for the value functions of many multi-asset extensions of the Avellaneda–Stoikov model. These approximations or proxies can be used (i) as heuristic evaluation functions, (ii) as initial value functions in reinforcement learning algorithms, and/or (iii) directly to design quoting strategies through a greedy approach. Regarding the latter, our results lead to new and easily interpretable closed-form approximations for the optimal quotes, both in the finite-horizon case and in the asymptotic (ergodic) regime.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"42 1","pages":"101 - 142"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Closed-form Approximations in Multi-asset Market Making\",\"authors\":\"Philippe Bergault, David Evangelista, Olivier Gu'eant, Douglas A. G. Vieira\",\"doi\":\"10.1080/1350486X.2021.1949359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A large proportion of market making models derive from the seminal model of Avellaneda and Stoikov. The numerical approximation of the value function and the optimal quotes in these models remains a challenge when the number of assets is large. In this article, we propose closed-form approximations for the value functions of many multi-asset extensions of the Avellaneda–Stoikov model. These approximations or proxies can be used (i) as heuristic evaluation functions, (ii) as initial value functions in reinforcement learning algorithms, and/or (iii) directly to design quoting strategies through a greedy approach. Regarding the latter, our results lead to new and easily interpretable closed-form approximations for the optimal quotes, both in the finite-horizon case and in the asymptotic (ergodic) regime.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"42 1\",\"pages\":\"101 - 142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2021.1949359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2021.1949359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 18

摘要

很大一部分做市模型来源于阿维利亚内达和斯托伊科夫的开创性模型。当资产数量较大时,这些模型中价值函数的数值逼近和最优报价仍然是一个挑战。在本文中,我们对Avellaneda-Stoikov模型的许多多资产扩展的值函数提出了封闭逼近。这些近似或代理可以使用(i)作为启发式评估函数,(ii)作为强化学习算法中的初始值函数,和/或(iii)直接通过贪婪方法设计引用策略。对于后者,我们的结果导致了新的和易于解释的最优报价的封闭形式近似,无论是在有限视界情况下还是在渐近(遍历)区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed-form Approximations in Multi-asset Market Making
ABSTRACT A large proportion of market making models derive from the seminal model of Avellaneda and Stoikov. The numerical approximation of the value function and the optimal quotes in these models remains a challenge when the number of assets is large. In this article, we propose closed-form approximations for the value functions of many multi-asset extensions of the Avellaneda–Stoikov model. These approximations or proxies can be used (i) as heuristic evaluation functions, (ii) as initial value functions in reinforcement learning algorithms, and/or (iii) directly to design quoting strategies through a greedy approach. Regarding the latter, our results lead to new and easily interpretable closed-form approximations for the optimal quotes, both in the finite-horizon case and in the asymptotic (ergodic) regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信