自适应k值k均值聚类算法

Wang Shenghui, Liang Hanbing
{"title":"自适应k值k均值聚类算法","authors":"Wang Shenghui, Liang Hanbing","doi":"10.1109/ICMCCE51767.2020.00316","DOIUrl":null,"url":null,"abstract":"Based on particle swarm optimization (PSO), the algorithm for selecting appropriate K values is improved by combining k-mean algorithm. When the algorithm converges, the expansion and reduction of K value can be determined by comparing the relationship between different K value selection and global optimal fitness. Experiments show that the improved algorithm can assist K value selection effectively and obtain a better clustering effect.","PeriodicalId":6712,"journal":{"name":"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","volume":"9 1","pages":"1442-1445"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive K-valued K-means clustering algorithm\",\"authors\":\"Wang Shenghui, Liang Hanbing\",\"doi\":\"10.1109/ICMCCE51767.2020.00316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on particle swarm optimization (PSO), the algorithm for selecting appropriate K values is improved by combining k-mean algorithm. When the algorithm converges, the expansion and reduction of K value can be determined by comparing the relationship between different K value selection and global optimal fitness. Experiments show that the improved algorithm can assist K value selection effectively and obtain a better clustering effect.\",\"PeriodicalId\":6712,\"journal\":{\"name\":\"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)\",\"volume\":\"9 1\",\"pages\":\"1442-1445\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMCCE51767.2020.00316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCCE51767.2020.00316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在粒子群算法(PSO)的基础上,结合K均值算法对K值选取算法进行了改进。当算法收敛时,可以通过比较不同K值选择与全局最优适应度之间的关系来确定K值的展开和缩小。实验表明,改进后的算法可以有效地辅助K值的选择,获得更好的聚类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive K-valued K-means clustering algorithm
Based on particle swarm optimization (PSO), the algorithm for selecting appropriate K values is improved by combining k-mean algorithm. When the algorithm converges, the expansion and reduction of K value can be determined by comparing the relationship between different K value selection and global optimal fitness. Experiments show that the improved algorithm can assist K value selection effectively and obtain a better clustering effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信