基于卷积神经网络的息肉实时检测辅助系统

Q4 Medicine
Daniel Kvak, Karolína Kvaková
{"title":"基于卷积神经网络的息肉实时检测辅助系统","authors":"Daniel Kvak, Karolína Kvaková","doi":"10.48095/ccgh2021540","DOIUrl":null,"url":null,"abstract":"Summary: The use of artifi cial intelligence as an assistive detection method in endoscopy has attracted increasing interest in recent years. Machine learning algorithms promise to improve the effi ciency of polyp detection and even optical localization of fi ndings, all with minimal training of the endoscopist. The practical goal of this study is to analyse the CAD software (computer-aided dia gnosis) Carebot for colorectal polyp detection using a convolutional neural network. The proposed binary classifier for polyp detection achieves accuracy of up to 98%, specifi city of 0.99 and precision of 0.96. At the same time, the need for the availability of large-scale clinical data for the development of artifi cial- -intelligence-based models for the automatic detection of adenomas and benign neoplastic lesions is discussed. Key words: polyp detection – convolutional neural network – artifi cial intelligence – computer-aided dia gnosis – spatial location","PeriodicalId":38577,"journal":{"name":"Gastroenterologie a Hepatologie","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assistance system for real-time polyp detection based on convolutional neural network\",\"authors\":\"Daniel Kvak, Karolína Kvaková\",\"doi\":\"10.48095/ccgh2021540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary: The use of artifi cial intelligence as an assistive detection method in endoscopy has attracted increasing interest in recent years. Machine learning algorithms promise to improve the effi ciency of polyp detection and even optical localization of fi ndings, all with minimal training of the endoscopist. The practical goal of this study is to analyse the CAD software (computer-aided dia gnosis) Carebot for colorectal polyp detection using a convolutional neural network. The proposed binary classifier for polyp detection achieves accuracy of up to 98%, specifi city of 0.99 and precision of 0.96. At the same time, the need for the availability of large-scale clinical data for the development of artifi cial- -intelligence-based models for the automatic detection of adenomas and benign neoplastic lesions is discussed. Key words: polyp detection – convolutional neural network – artifi cial intelligence – computer-aided dia gnosis – spatial location\",\"PeriodicalId\":38577,\"journal\":{\"name\":\"Gastroenterologie a Hepatologie\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gastroenterologie a Hepatologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48095/ccgh2021540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastroenterologie a Hepatologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48095/ccgh2021540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

摘要:近年来,人工智能作为一种辅助检测方法在内窥镜检查中的应用引起了越来越多的关注。机器学习算法有望提高息肉检测的效率,甚至可以提高发现的光学定位,所有这些都只需要对内窥镜医师进行最少的培训。本研究的实际目的是利用卷积神经网络分析CAD软件(计算机辅助诊断)Carebot对结肠直肠息肉的检测。所提出的二值分类器用于息肉检测的准确率高达98%,特异度为0.99,精密度为0.96。同时,讨论了开发基于人工智能的自动检测腺瘤和良性肿瘤病变模型所需的大规模临床数据的可用性。关键词:息肉检测卷积神经网络人工智能计算机辅助诊断空间定位
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assistance system for real-time polyp detection based on convolutional neural network
Summary: The use of artifi cial intelligence as an assistive detection method in endoscopy has attracted increasing interest in recent years. Machine learning algorithms promise to improve the effi ciency of polyp detection and even optical localization of fi ndings, all with minimal training of the endoscopist. The practical goal of this study is to analyse the CAD software (computer-aided dia gnosis) Carebot for colorectal polyp detection using a convolutional neural network. The proposed binary classifier for polyp detection achieves accuracy of up to 98%, specifi city of 0.99 and precision of 0.96. At the same time, the need for the availability of large-scale clinical data for the development of artifi cial- -intelligence-based models for the automatic detection of adenomas and benign neoplastic lesions is discussed. Key words: polyp detection – convolutional neural network – artifi cial intelligence – computer-aided dia gnosis – spatial location
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gastroenterologie a Hepatologie
Gastroenterologie a Hepatologie Medicine-Gastroenterology
CiteScore
0.40
自引率
0.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信