推断不可见流量

V. Bharti, P. Kankar, L. Setia, Gonca Gürsun, Anukool Lakhina, M. Crovella
{"title":"推断不可见流量","authors":"V. Bharti, P. Kankar, L. Setia, Gonca Gürsun, Anukool Lakhina, M. Crovella","doi":"10.1145/1921168.1921197","DOIUrl":null,"url":null,"abstract":"A traffic matrix encompassing the entire Internet would be very valuable. Unfortunately, from any given vantage point in the network, most traffic is invisible. In this paper we describe results that hold some promise for this problem. First, we show a new characterization result: traffic matrices (TMs) typically show very low effective rank. This result refers to TMs that are purely spatial (have no temporal component), over a wide range of spatial granularities. Next, we define an inference problem whose solution allows one to infer invisible TM elements. This problem relies crucially on an atomicity property we define. Finally, we show example solutions of this inference problem via two different methods: regularized regression and matrix completion. The example consists of an AS inferring the amount of invisible traffic passing between other pairs of ASes. Using this example we illustrate the accuracy of the methods as a function of spatial granularity.","PeriodicalId":20688,"journal":{"name":"Proceedings of The 6th International Conference on Innovation in Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Inferring invisible traffic\",\"authors\":\"V. Bharti, P. Kankar, L. Setia, Gonca Gürsun, Anukool Lakhina, M. Crovella\",\"doi\":\"10.1145/1921168.1921197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A traffic matrix encompassing the entire Internet would be very valuable. Unfortunately, from any given vantage point in the network, most traffic is invisible. In this paper we describe results that hold some promise for this problem. First, we show a new characterization result: traffic matrices (TMs) typically show very low effective rank. This result refers to TMs that are purely spatial (have no temporal component), over a wide range of spatial granularities. Next, we define an inference problem whose solution allows one to infer invisible TM elements. This problem relies crucially on an atomicity property we define. Finally, we show example solutions of this inference problem via two different methods: regularized regression and matrix completion. The example consists of an AS inferring the amount of invisible traffic passing between other pairs of ASes. Using this example we illustrate the accuracy of the methods as a function of spatial granularity.\",\"PeriodicalId\":20688,\"journal\":{\"name\":\"Proceedings of The 6th International Conference on Innovation in Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 6th International Conference on Innovation in Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1921168.1921197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 6th International Conference on Innovation in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1921168.1921197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

一个包含整个互联网的流量矩阵将是非常有价值的。不幸的是,从网络中任何给定的有利位置来看,大多数流量都是不可见的。在本文中,我们描述了一些对这个问题有希望的结果。首先,我们展示了一个新的表征结果:流量矩阵(TMs)通常显示非常低的有效秩。这个结果是指在很大的空间粒度范围内,纯空间(没有时间成分)的tm。接下来,我们定义一个推理问题,其解决方案允许推断不可见的TM元素。这个问题主要依赖于我们定义的原子性。最后,我们通过正则化回归和矩阵补全两种不同的方法给出了该推理问题的示例解。该示例包括一个AS推断在其他AS对之间传递的不可见流量的数量。通过这个例子,我们说明了这些方法作为空间粒度函数的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring invisible traffic
A traffic matrix encompassing the entire Internet would be very valuable. Unfortunately, from any given vantage point in the network, most traffic is invisible. In this paper we describe results that hold some promise for this problem. First, we show a new characterization result: traffic matrices (TMs) typically show very low effective rank. This result refers to TMs that are purely spatial (have no temporal component), over a wide range of spatial granularities. Next, we define an inference problem whose solution allows one to infer invisible TM elements. This problem relies crucially on an atomicity property we define. Finally, we show example solutions of this inference problem via two different methods: regularized regression and matrix completion. The example consists of an AS inferring the amount of invisible traffic passing between other pairs of ASes. Using this example we illustrate the accuracy of the methods as a function of spatial granularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信