{"title":"基于深度学习的交通系统和其他公共空间的社会距离评估","authors":"M. Guerrieri, G. Parla","doi":"10.2478/ttj-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract This research put forward an efficacious real-time deep learning-based technique to automate the process of monitoring the social distancing in transportation systems (e.g., bus stops, railway stations, airport terminals, etc.) and other public spaces with the purpose to mitigate the impact of coronavirus pandemic. The proposed technique makes use of the YOLOv3 model to segregate humans from the background of each image of a surveillance video and the linear Kalman filter for tracking the humans’ motion even in case in which another object or person overlaps the trajectory of the person under analysis. The performance of the model in human detection is extremely high as demonstrated by the accuracy of the model that reaches values higher than 95%. The detection algorithm can be applied for alerting people to keep a safe distance from each other when they are in crowded places or in groups.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"173 1","pages":"160 - 167"},"PeriodicalIF":1.1000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social Distance Evaluation in Transportation Systems and Other Public Spaces using Deep Learning\",\"authors\":\"M. Guerrieri, G. Parla\",\"doi\":\"10.2478/ttj-2022-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This research put forward an efficacious real-time deep learning-based technique to automate the process of monitoring the social distancing in transportation systems (e.g., bus stops, railway stations, airport terminals, etc.) and other public spaces with the purpose to mitigate the impact of coronavirus pandemic. The proposed technique makes use of the YOLOv3 model to segregate humans from the background of each image of a surveillance video and the linear Kalman filter for tracking the humans’ motion even in case in which another object or person overlaps the trajectory of the person under analysis. The performance of the model in human detection is extremely high as demonstrated by the accuracy of the model that reaches values higher than 95%. The detection algorithm can be applied for alerting people to keep a safe distance from each other when they are in crowded places or in groups.\",\"PeriodicalId\":44110,\"journal\":{\"name\":\"Transport and Telecommunication Journal\",\"volume\":\"173 1\",\"pages\":\"160 - 167\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport and Telecommunication Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ttj-2022-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport and Telecommunication Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ttj-2022-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Social Distance Evaluation in Transportation Systems and Other Public Spaces using Deep Learning
Abstract This research put forward an efficacious real-time deep learning-based technique to automate the process of monitoring the social distancing in transportation systems (e.g., bus stops, railway stations, airport terminals, etc.) and other public spaces with the purpose to mitigate the impact of coronavirus pandemic. The proposed technique makes use of the YOLOv3 model to segregate humans from the background of each image of a surveillance video and the linear Kalman filter for tracking the humans’ motion even in case in which another object or person overlaps the trajectory of the person under analysis. The performance of the model in human detection is extremely high as demonstrated by the accuracy of the model that reaches values higher than 95%. The detection algorithm can be applied for alerting people to keep a safe distance from each other when they are in crowded places or in groups.