调色板:图像重新着色与给定的调色板

Junho Cho, Sangdoo Yun, Kyoung-Ok Lee, J. Choi
{"title":"调色板:图像重新着色与给定的调色板","authors":"Junho Cho, Sangdoo Yun, Kyoung-Ok Lee, J. Choi","doi":"10.1109/CVPRW.2017.143","DOIUrl":null,"url":null,"abstract":"Image recolorization enhances the visual perception of an image for design and artistic purposes. In this work, we present a deep neural network, referred to as PaletteNet, which recolors an image according to a given target color palette that is useful to express the color concept of an image. PaletteNet takes two inputs: a source image to be recolored and a target palette. PaletteNet is then designed to change the color concept of a source image so that the palette of the output image is close to the target palette. To train PaletteNet, the proposed multi-task loss is composed of Euclidean loss and adversarial loss. The experimental results show that the proposed method outperforms the existing recolorization methods. Human experts with a commercial software take on average 18 minutes to recolor an image, while PaletteNet automatically recolors plausible results in less than a second.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"23 1","pages":"1058-1066"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"PaletteNet: Image Recolorization with Given Color Palette\",\"authors\":\"Junho Cho, Sangdoo Yun, Kyoung-Ok Lee, J. Choi\",\"doi\":\"10.1109/CVPRW.2017.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image recolorization enhances the visual perception of an image for design and artistic purposes. In this work, we present a deep neural network, referred to as PaletteNet, which recolors an image according to a given target color palette that is useful to express the color concept of an image. PaletteNet takes two inputs: a source image to be recolored and a target palette. PaletteNet is then designed to change the color concept of a source image so that the palette of the output image is close to the target palette. To train PaletteNet, the proposed multi-task loss is composed of Euclidean loss and adversarial loss. The experimental results show that the proposed method outperforms the existing recolorization methods. Human experts with a commercial software take on average 18 minutes to recolor an image, while PaletteNet automatically recolors plausible results in less than a second.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"23 1\",\"pages\":\"1058-1066\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

为了设计和艺术目的,图像再着色增强了图像的视觉感知。在这项工作中,我们提出了一个深度神经网络,称为PaletteNet,它根据给定的目标调色板重新为图像上色,这有助于表达图像的颜色概念。PaletteNet接受两个输入:要重新着色的源图像和目标调色板。然后,PaletteNet被设计为更改源图像的颜色概念,以便输出图像的调色板接近目标调色板。为了训练PaletteNet,提出的多任务损失由欧几里得损失和对抗损失组成。实验结果表明,该方法优于现有的再着色方法。使用商业软件的人类专家平均需要18分钟来重新为图像上色,而PaletteNet在不到一秒钟的时间内自动重新为可信的结果上色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PaletteNet: Image Recolorization with Given Color Palette
Image recolorization enhances the visual perception of an image for design and artistic purposes. In this work, we present a deep neural network, referred to as PaletteNet, which recolors an image according to a given target color palette that is useful to express the color concept of an image. PaletteNet takes two inputs: a source image to be recolored and a target palette. PaletteNet is then designed to change the color concept of a source image so that the palette of the output image is close to the target palette. To train PaletteNet, the proposed multi-task loss is composed of Euclidean loss and adversarial loss. The experimental results show that the proposed method outperforms the existing recolorization methods. Human experts with a commercial software take on average 18 minutes to recolor an image, while PaletteNet automatically recolors plausible results in less than a second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信