数前导数的分布2

Y. Ohkubo, O. Strauch
{"title":"数前导数的分布2","authors":"Y. Ohkubo, O. Strauch","doi":"10.2478/udt-2019-0003","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the sequence (f (pn))n≥1,where pn is the nth prime number and f is a function of a class of slowly increasing functions including f (x)=logb xr and f (x)=logb(x log x)r,where b ≥ 2 is an integer and r> 0 is a real number. We give upper bounds of the discrepancy DNi*(f(pn),g) D_{{N_i}}^*\\left( {f\\left( {{p_n}} \\right),g} \\right) for a distribution function g and a sub-sequence (Ni)i≥1 of the natural numbers. Especially for f (x)= logb xr, we obtain the effective results for an upper bound of D Ni*(f(pn)g) D_{{N_i}}^*\\left( {f\\left( {{p_n}} \\right),g} \\right) .","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"1 1","pages":"19 - 42"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distribuion of Leading Digits of Numbers II\",\"authors\":\"Y. Ohkubo, O. Strauch\",\"doi\":\"10.2478/udt-2019-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the sequence (f (pn))n≥1,where pn is the nth prime number and f is a function of a class of slowly increasing functions including f (x)=logb xr and f (x)=logb(x log x)r,where b ≥ 2 is an integer and r> 0 is a real number. We give upper bounds of the discrepancy DNi*(f(pn),g) D_{{N_i}}^*\\\\left( {f\\\\left( {{p_n}} \\\\right),g} \\\\right) for a distribution function g and a sub-sequence (Ni)i≥1 of the natural numbers. Especially for f (x)= logb xr, we obtain the effective results for an upper bound of D Ni*(f(pn)g) D_{{N_i}}^*\\\\left( {f\\\\left( {{p_n}} \\\\right),g} \\\\right) .\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"1 1\",\"pages\":\"19 - 42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2019-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2019-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文研究了序列(f (pn))n≥1,其中pn为第n个素数,f为f (x)=logb(x log x)r和f (x)=logb(x log x)r这类缓增函数的函数,其中b≥2为整数,r> 0为实数。对于一个分布函数g和一个自然数的子序列(Ni)i≥1,我们给出了差异DNi*(f(pn),g) D_{{N_i}}^*\left({f\left({{p_n}} \right),g} \right)的上界。特别是对于f(x)= logbxr,我们得到了D Ni*(f(pn)g) D_{{N_i}}^*\左({f\左({{p_n}} \右),g} \右)上界的有效结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribuion of Leading Digits of Numbers II
Abstract In this paper, we study the sequence (f (pn))n≥1,where pn is the nth prime number and f is a function of a class of slowly increasing functions including f (x)=logb xr and f (x)=logb(x log x)r,where b ≥ 2 is an integer and r> 0 is a real number. We give upper bounds of the discrepancy DNi*(f(pn),g) D_{{N_i}}^*\left( {f\left( {{p_n}} \right),g} \right) for a distribution function g and a sub-sequence (Ni)i≥1 of the natural numbers. Especially for f (x)= logb xr, we obtain the effective results for an upper bound of D Ni*(f(pn)g) D_{{N_i}}^*\left( {f\left( {{p_n}} \right),g} \right) .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信