{"title":"可调低温微波腔内强磁子-光子耦合","authors":"C. Potts, J. Davis","doi":"10.1063/5.0015660","DOIUrl":null,"url":null,"abstract":"The ability to achieve strong-coupling has made cavity-magnon systems an exciting platform for the development of hybrid quantum systems and the investigation of fundamental problems in physics. Unfortunately, current experimental realizations are constrained to operate at a single frequency, defined by the geometry of the microwave cavity. In this article we realize a highly-tunable, cryogenic, microwave cavity strongly coupled to magnetic spins. The cavity can be tuned in situ by up to 1.5 GHz, approximately 15% of its original 10 GHz resonance frequency. Moreover, this system remains within the strong-coupling regime at all frequencies with a cooperativity of approximately 800.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Strong magnon–photon coupling within a tunable cryogenic microwave cavity\",\"authors\":\"C. Potts, J. Davis\",\"doi\":\"10.1063/5.0015660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to achieve strong-coupling has made cavity-magnon systems an exciting platform for the development of hybrid quantum systems and the investigation of fundamental problems in physics. Unfortunately, current experimental realizations are constrained to operate at a single frequency, defined by the geometry of the microwave cavity. In this article we realize a highly-tunable, cryogenic, microwave cavity strongly coupled to magnetic spins. The cavity can be tuned in situ by up to 1.5 GHz, approximately 15% of its original 10 GHz resonance frequency. Moreover, this system remains within the strong-coupling regime at all frequencies with a cooperativity of approximately 800.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0015660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0015660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strong magnon–photon coupling within a tunable cryogenic microwave cavity
The ability to achieve strong-coupling has made cavity-magnon systems an exciting platform for the development of hybrid quantum systems and the investigation of fundamental problems in physics. Unfortunately, current experimental realizations are constrained to operate at a single frequency, defined by the geometry of the microwave cavity. In this article we realize a highly-tunable, cryogenic, microwave cavity strongly coupled to magnetic spins. The cavity can be tuned in situ by up to 1.5 GHz, approximately 15% of its original 10 GHz resonance frequency. Moreover, this system remains within the strong-coupling regime at all frequencies with a cooperativity of approximately 800.