函数优化的改进差分进化

Q1 Social Sciences
Zhigang Zhou
{"title":"函数优化的改进差分进化","authors":"Zhigang Zhou","doi":"10.1109/MVHI.2010.146","DOIUrl":null,"url":null,"abstract":"This paper presents an improved differential evolution (DE) algorithm to enhance the performance of DE. The proposed approach is called MPTDE which employs a novel mutation operator. The main idea of MPTDE is to conduct a mutation on each individual and select a fitter one between the current one and the mutated one as the new current individual. In order to verify the performance of MPTDE, we test it on ten well-known benchmark functions. The experimental results show that MPTDE outperforms DE on majority of test functions.","PeriodicalId":34860,"journal":{"name":"HumanMachine Communication Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Differential Evolution for Function Optimization\",\"authors\":\"Zhigang Zhou\",\"doi\":\"10.1109/MVHI.2010.146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved differential evolution (DE) algorithm to enhance the performance of DE. The proposed approach is called MPTDE which employs a novel mutation operator. The main idea of MPTDE is to conduct a mutation on each individual and select a fitter one between the current one and the mutated one as the new current individual. In order to verify the performance of MPTDE, we test it on ten well-known benchmark functions. The experimental results show that MPTDE outperforms DE on majority of test functions.\",\"PeriodicalId\":34860,\"journal\":{\"name\":\"HumanMachine Communication Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HumanMachine Communication Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVHI.2010.146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HumanMachine Communication Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVHI.2010.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

为了提高差分进化算法的性能,本文提出了一种改进的差分进化算法,该算法采用了一种新的变异算子,称为MPTDE算法。MPTDE的主要思想是对每个个体进行突变,并在当前个体和突变个体之间选择一个更适合的个体作为新的当前个体。为了验证MPTDE的性能,我们在十个知名的基准函数上进行了测试。实验结果表明,MPTDE在大多数测试函数上都优于DE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Differential Evolution for Function Optimization
This paper presents an improved differential evolution (DE) algorithm to enhance the performance of DE. The proposed approach is called MPTDE which employs a novel mutation operator. The main idea of MPTDE is to conduct a mutation on each individual and select a fitter one between the current one and the mutated one as the new current individual. In order to verify the performance of MPTDE, we test it on ten well-known benchmark functions. The experimental results show that MPTDE outperforms DE on majority of test functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信