Erica Padovan, Giorgia Marullo, L. Tanzi, P. Piazzolla, Sandro Moos, F. Porpiglia, E. Vezzetti
{"title":"机器人辅助腹腔镜手术中实时3D模型注册的深度学习框架","authors":"Erica Padovan, Giorgia Marullo, L. Tanzi, P. Piazzolla, Sandro Moos, F. Porpiglia, E. Vezzetti","doi":"10.1002/rcs.2387","DOIUrl":null,"url":null,"abstract":"The current study presents a deep learning framework to determine, in real‐time, position and rotation of a target organ from an endoscopic video. These inferred data are used to overlay the 3D model of patient's organ over its real counterpart. The resulting augmented video flow is streamed back to the surgeon as a support during laparoscopic robot‐assisted procedures.","PeriodicalId":75029,"journal":{"name":"The international journal of medical robotics + computer assisted surgery : MRCAS","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery\",\"authors\":\"Erica Padovan, Giorgia Marullo, L. Tanzi, P. Piazzolla, Sandro Moos, F. Porpiglia, E. Vezzetti\",\"doi\":\"10.1002/rcs.2387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study presents a deep learning framework to determine, in real‐time, position and rotation of a target organ from an endoscopic video. These inferred data are used to overlay the 3D model of patient's organ over its real counterpart. The resulting augmented video flow is streamed back to the surgeon as a support during laparoscopic robot‐assisted procedures.\",\"PeriodicalId\":75029,\"journal\":{\"name\":\"The international journal of medical robotics + computer assisted surgery : MRCAS\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The international journal of medical robotics + computer assisted surgery : MRCAS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/rcs.2387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of medical robotics + computer assisted surgery : MRCAS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rcs.2387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery
The current study presents a deep learning framework to determine, in real‐time, position and rotation of a target organ from an endoscopic video. These inferred data are used to overlay the 3D model of patient's organ over its real counterpart. The resulting augmented video flow is streamed back to the surgeon as a support during laparoscopic robot‐assisted procedures.