D. Cao, M. Han, S. Saleh, S. Ayirala, A. Al-yousef
{"title":"SmartWater协同微球注入用于渗透性碳酸盐","authors":"D. Cao, M. Han, S. Saleh, S. Ayirala, A. Al-yousef","doi":"10.2118/204699-ms","DOIUrl":null,"url":null,"abstract":"\n This paper presents a laboratory study on combination of SmartWater with microsphere injection to improve oil production in carbonates, which increases the sweep efficiency and oil displacement efficiency. In this study, the properties of a micro-sized polymeric microsphere were investigated including size distribution, rheology, and zeta potential in SmartWater, compared with conventional high salinity injection water. Coreflooding tests using natural permeable carbonate cores were performed to evaluate flow performance and oil production potential at 95°C and 3,100 psi pore pressure. The flow performance was evaluated by the injection of 1 pore volume microspheres, followed by excessive water injection. Oil displacement tests were also performed by injecting 1 pore volume of microspheres dissolved in SmartWater after conventional waterflooding.\n The median particle size of the microsphere in conventional injection water with a salinity of 57,670 ppm was about 0.25 µm. The particle size was increased by 50% to 100% with reduced elastic modulus when the microsphere dispersed in SmartWater with lower salinity. The zeta potential value of microsphere was decreased in SmartWater compared to that in conventional injection water, showing more negatively charge property. Flow performance of microsphere solutions in the carbonate cores was found to be dependent on their particle size, strength, and suspension stability. The results from coreflooding tests showed that the microsphere dispersed in SmartWater would result in higher differential pressure than that observed in conventional injection water. The SmartWater caused the microspheres swell to larger but softer particles with better suspension stability, which enhanced both the migration and blocking efficiency of microsphere injection. The oil displacement tests confirmed that the microsphere in SmartWater displaced more oil than that obtained with conventional injection water. This result was clearly supported by the higher differential pressure from microsphere injection in SmartWater. The oil bank appeared historically in the post water injection stage, which was quite different from the reported findings of typical mobility controlling agents in the existing knowledge. The microspheres were observed in the core flood produced fluids, indicating the improvement of microsphere migration by SmartWater. This work, for the first time, demonstrated that the combination of SmartWater and microsphere injection yields additional oil production. The proposed hybrid technique can provide a cost-effective way to improve waterflooding performance in heterogeneous carbonates.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SmartWater Synergy with Microsphere Injection for Permeable Carbonates\",\"authors\":\"D. Cao, M. Han, S. Saleh, S. Ayirala, A. Al-yousef\",\"doi\":\"10.2118/204699-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a laboratory study on combination of SmartWater with microsphere injection to improve oil production in carbonates, which increases the sweep efficiency and oil displacement efficiency. In this study, the properties of a micro-sized polymeric microsphere were investigated including size distribution, rheology, and zeta potential in SmartWater, compared with conventional high salinity injection water. Coreflooding tests using natural permeable carbonate cores were performed to evaluate flow performance and oil production potential at 95°C and 3,100 psi pore pressure. The flow performance was evaluated by the injection of 1 pore volume microspheres, followed by excessive water injection. Oil displacement tests were also performed by injecting 1 pore volume of microspheres dissolved in SmartWater after conventional waterflooding.\\n The median particle size of the microsphere in conventional injection water with a salinity of 57,670 ppm was about 0.25 µm. The particle size was increased by 50% to 100% with reduced elastic modulus when the microsphere dispersed in SmartWater with lower salinity. The zeta potential value of microsphere was decreased in SmartWater compared to that in conventional injection water, showing more negatively charge property. Flow performance of microsphere solutions in the carbonate cores was found to be dependent on their particle size, strength, and suspension stability. The results from coreflooding tests showed that the microsphere dispersed in SmartWater would result in higher differential pressure than that observed in conventional injection water. The SmartWater caused the microspheres swell to larger but softer particles with better suspension stability, which enhanced both the migration and blocking efficiency of microsphere injection. The oil displacement tests confirmed that the microsphere in SmartWater displaced more oil than that obtained with conventional injection water. This result was clearly supported by the higher differential pressure from microsphere injection in SmartWater. The oil bank appeared historically in the post water injection stage, which was quite different from the reported findings of typical mobility controlling agents in the existing knowledge. The microspheres were observed in the core flood produced fluids, indicating the improvement of microsphere migration by SmartWater. This work, for the first time, demonstrated that the combination of SmartWater and microsphere injection yields additional oil production. The proposed hybrid technique can provide a cost-effective way to improve waterflooding performance in heterogeneous carbonates.\",\"PeriodicalId\":11024,\"journal\":{\"name\":\"Day 4 Wed, December 01, 2021\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Wed, December 01, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204699-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Wed, December 01, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204699-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SmartWater Synergy with Microsphere Injection for Permeable Carbonates
This paper presents a laboratory study on combination of SmartWater with microsphere injection to improve oil production in carbonates, which increases the sweep efficiency and oil displacement efficiency. In this study, the properties of a micro-sized polymeric microsphere were investigated including size distribution, rheology, and zeta potential in SmartWater, compared with conventional high salinity injection water. Coreflooding tests using natural permeable carbonate cores were performed to evaluate flow performance and oil production potential at 95°C and 3,100 psi pore pressure. The flow performance was evaluated by the injection of 1 pore volume microspheres, followed by excessive water injection. Oil displacement tests were also performed by injecting 1 pore volume of microspheres dissolved in SmartWater after conventional waterflooding.
The median particle size of the microsphere in conventional injection water with a salinity of 57,670 ppm was about 0.25 µm. The particle size was increased by 50% to 100% with reduced elastic modulus when the microsphere dispersed in SmartWater with lower salinity. The zeta potential value of microsphere was decreased in SmartWater compared to that in conventional injection water, showing more negatively charge property. Flow performance of microsphere solutions in the carbonate cores was found to be dependent on their particle size, strength, and suspension stability. The results from coreflooding tests showed that the microsphere dispersed in SmartWater would result in higher differential pressure than that observed in conventional injection water. The SmartWater caused the microspheres swell to larger but softer particles with better suspension stability, which enhanced both the migration and blocking efficiency of microsphere injection. The oil displacement tests confirmed that the microsphere in SmartWater displaced more oil than that obtained with conventional injection water. This result was clearly supported by the higher differential pressure from microsphere injection in SmartWater. The oil bank appeared historically in the post water injection stage, which was quite different from the reported findings of typical mobility controlling agents in the existing knowledge. The microspheres were observed in the core flood produced fluids, indicating the improvement of microsphere migration by SmartWater. This work, for the first time, demonstrated that the combination of SmartWater and microsphere injection yields additional oil production. The proposed hybrid technique can provide a cost-effective way to improve waterflooding performance in heterogeneous carbonates.