{"title":"采用热喷涂工艺对低碳钢1.0060纯氧化铝陶瓷涂层接触温度进行建模","authors":"R. Younes, Y. Mouadji, H. Touati, M. A. Bradai","doi":"10.4028/p-sNm0Zd","DOIUrl":null,"url":null,"abstract":"In previous research problem statement occur in hardness to reach the thermal flux between surfaces during movement. The aim of the present investigation has been conducted to study the thermal behavior of ceramic Al2O3 (AL-99) coated on a low carbon steel type 1.0060 by using a thermal flame spray technique. The key methods used is microstructural characterization and comparing between experimental data record and numerical program.SEM showed that the Al2O3 coatings have a dense microstructure, lamellar morphology and complex of several phases. The XRD analysis of the coating after the spray showed a majority phase of α -Al2O3 rhombohedral structure and secondary phase of γ-Al2O3 orthorhombic structure. The experimental data recorded From wear indicate two step, first one corresponds to the phase of accommodation between surfaces (samples/ disc), the contact temperature gradually increases to a value Of 75 °C for both pairs, the second step , we could remark from experimental and numerical simulation, it reach 95°C for experimental test and 85 for numerical model.The important findings in tribological results showed that the temperature at the contact is related to the shear stress that will result from the increase of the heat flux. From these results it can be said that the measured temperature increases with the increase of the charge and converges with the contact time. The gap of temperature between experimental and numerical results is probably due to the parameter of microstructure, where in experimental porosities improve convection in the area, in contrast the numerical materials don't add this phenomena.","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":"34 1","pages":"59 - 71"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Temperature of Contact Generated in Coatings of Pure Alumina Ceramic onto Low Carbon Steel Type 1.0060 Obtained by the Thermal Spraying Process\",\"authors\":\"R. Younes, Y. Mouadji, H. Touati, M. A. Bradai\",\"doi\":\"10.4028/p-sNm0Zd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In previous research problem statement occur in hardness to reach the thermal flux between surfaces during movement. The aim of the present investigation has been conducted to study the thermal behavior of ceramic Al2O3 (AL-99) coated on a low carbon steel type 1.0060 by using a thermal flame spray technique. The key methods used is microstructural characterization and comparing between experimental data record and numerical program.SEM showed that the Al2O3 coatings have a dense microstructure, lamellar morphology and complex of several phases. The XRD analysis of the coating after the spray showed a majority phase of α -Al2O3 rhombohedral structure and secondary phase of γ-Al2O3 orthorhombic structure. The experimental data recorded From wear indicate two step, first one corresponds to the phase of accommodation between surfaces (samples/ disc), the contact temperature gradually increases to a value Of 75 °C for both pairs, the second step , we could remark from experimental and numerical simulation, it reach 95°C for experimental test and 85 for numerical model.The important findings in tribological results showed that the temperature at the contact is related to the shear stress that will result from the increase of the heat flux. From these results it can be said that the measured temperature increases with the increase of the charge and converges with the contact time. The gap of temperature between experimental and numerical results is probably due to the parameter of microstructure, where in experimental porosities improve convection in the area, in contrast the numerical materials don't add this phenomena.\",\"PeriodicalId\":7271,\"journal\":{\"name\":\"Advanced Materials Research\",\"volume\":\"34 1\",\"pages\":\"59 - 71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-sNm0Zd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-sNm0Zd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Temperature of Contact Generated in Coatings of Pure Alumina Ceramic onto Low Carbon Steel Type 1.0060 Obtained by the Thermal Spraying Process
In previous research problem statement occur in hardness to reach the thermal flux between surfaces during movement. The aim of the present investigation has been conducted to study the thermal behavior of ceramic Al2O3 (AL-99) coated on a low carbon steel type 1.0060 by using a thermal flame spray technique. The key methods used is microstructural characterization and comparing between experimental data record and numerical program.SEM showed that the Al2O3 coatings have a dense microstructure, lamellar morphology and complex of several phases. The XRD analysis of the coating after the spray showed a majority phase of α -Al2O3 rhombohedral structure and secondary phase of γ-Al2O3 orthorhombic structure. The experimental data recorded From wear indicate two step, first one corresponds to the phase of accommodation between surfaces (samples/ disc), the contact temperature gradually increases to a value Of 75 °C for both pairs, the second step , we could remark from experimental and numerical simulation, it reach 95°C for experimental test and 85 for numerical model.The important findings in tribological results showed that the temperature at the contact is related to the shear stress that will result from the increase of the heat flux. From these results it can be said that the measured temperature increases with the increase of the charge and converges with the contact time. The gap of temperature between experimental and numerical results is probably due to the parameter of microstructure, where in experimental porosities improve convection in the area, in contrast the numerical materials don't add this phenomena.