求解多频振荡波动方程

IF 1 Q3 Engineering
M. Condon, A. Iserles, K. Kropielnicka, P. Singh
{"title":"求解多频振荡波动方程","authors":"M. Condon, A. Iserles, K. Kropielnicka, P. Singh","doi":"10.3934/jcd.2019012","DOIUrl":null,"url":null,"abstract":"We explore a new asymptotic-numerical solver for the time-dependent wave equation with an interaction term that is oscillating in time with a very high frequency. The method involves representing the solution as an asymptotic series in inverse powers of the oscillation frequency. Using the new scheme, high accuracy is achieved at a low computational cost. Salient features of the new approach are highlighted by a numerical example.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"7 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Solving the wave equation with multifrequency oscillations\",\"authors\":\"M. Condon, A. Iserles, K. Kropielnicka, P. Singh\",\"doi\":\"10.3934/jcd.2019012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore a new asymptotic-numerical solver for the time-dependent wave equation with an interaction term that is oscillating in time with a very high frequency. The method involves representing the solution as an asymptotic series in inverse powers of the oscillation frequency. Using the new scheme, high accuracy is achieved at a low computational cost. Salient features of the new approach are highlighted by a numerical example.\",\"PeriodicalId\":37526,\"journal\":{\"name\":\"Journal of Computational Dynamics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jcd.2019012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2019012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了具有高频随时间振荡的相互作用项的时变波动方程的一种新的渐近数值解。该方法将解表示为振荡频率反幂的渐近级数。使用该方案,可以在较低的计算成本下获得较高的精度。最后通过数值算例说明了该方法的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving the wave equation with multifrequency oscillations
We explore a new asymptotic-numerical solver for the time-dependent wave equation with an interaction term that is oscillating in time with a very high frequency. The method involves representing the solution as an asymptotic series in inverse powers of the oscillation frequency. Using the new scheme, high accuracy is achieved at a low computational cost. Salient features of the new approach are highlighted by a numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Dynamics
Journal of Computational Dynamics Engineering-Computational Mechanics
CiteScore
2.30
自引率
10.00%
发文量
31
期刊介绍: JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信