{"title":"铁离子印迹聚合物用于原油和燃料油中铁的分离和预富集","authors":"H. Mohsen, Y. K. Al-bayati, R. Jalil","doi":"10.52716/jprs.v12i2.656","DOIUrl":null,"url":null,"abstract":"A novel Iron ion-imprinted polymers (IIPs) was synthesized by bulk polymerization using different types of monomers such as 1-vinyl imidazole and Styrene, respectively. Molar ratios of monomer, template and cross-linking agent for polymerization, various monomers and solvents were studied to obtain the largest adsorption capacity for Iron. The prepared Iron-IIPs were characterized using energy dispersive X-ray spectroscopy (EDX), Fourier - transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM).\n The three-dimensional network structure surfaces of Iron-IIPs are unaffected by the elution procedure. Iron ions were successfully eluted from IIPs using a mixed solution from ethanol and acetic acid. The maximum adsorption capacity of Iron-IIPs was is (514.5)µmol/g for Iron-IIP1(using styrene as a monomer) and (429.1) µmol/g for Iron-IIP2(using 1-vinyl imidazole as a monomer). The adsorption by Iron-IIPs followed a Langmuir isotherm models. Solid-phase extraction (SPE) syringe packed with ionic imprinted polymers (IIPs) were used to selective separation for Iron ion from Crude or fuel oil and digest the polymer to determination the Iron by flame atomic absorption spectroscopy (FAAS) Abbreviation IIP-SPE-FAAS.","PeriodicalId":16710,"journal":{"name":"Journal of Petroleum Research and Studies","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron Ionic Imprinted Polymers IIps for Separation and Preconcentration of Iron from Crude and Fuel Oil\",\"authors\":\"H. Mohsen, Y. K. Al-bayati, R. Jalil\",\"doi\":\"10.52716/jprs.v12i2.656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel Iron ion-imprinted polymers (IIPs) was synthesized by bulk polymerization using different types of monomers such as 1-vinyl imidazole and Styrene, respectively. Molar ratios of monomer, template and cross-linking agent for polymerization, various monomers and solvents were studied to obtain the largest adsorption capacity for Iron. The prepared Iron-IIPs were characterized using energy dispersive X-ray spectroscopy (EDX), Fourier - transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM).\\n The three-dimensional network structure surfaces of Iron-IIPs are unaffected by the elution procedure. Iron ions were successfully eluted from IIPs using a mixed solution from ethanol and acetic acid. The maximum adsorption capacity of Iron-IIPs was is (514.5)µmol/g for Iron-IIP1(using styrene as a monomer) and (429.1) µmol/g for Iron-IIP2(using 1-vinyl imidazole as a monomer). The adsorption by Iron-IIPs followed a Langmuir isotherm models. Solid-phase extraction (SPE) syringe packed with ionic imprinted polymers (IIPs) were used to selective separation for Iron ion from Crude or fuel oil and digest the polymer to determination the Iron by flame atomic absorption spectroscopy (FAAS) Abbreviation IIP-SPE-FAAS.\",\"PeriodicalId\":16710,\"journal\":{\"name\":\"Journal of Petroleum Research and Studies\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Research and Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52716/jprs.v12i2.656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Research and Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52716/jprs.v12i2.656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iron Ionic Imprinted Polymers IIps for Separation and Preconcentration of Iron from Crude and Fuel Oil
A novel Iron ion-imprinted polymers (IIPs) was synthesized by bulk polymerization using different types of monomers such as 1-vinyl imidazole and Styrene, respectively. Molar ratios of monomer, template and cross-linking agent for polymerization, various monomers and solvents were studied to obtain the largest adsorption capacity for Iron. The prepared Iron-IIPs were characterized using energy dispersive X-ray spectroscopy (EDX), Fourier - transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM).
The three-dimensional network structure surfaces of Iron-IIPs are unaffected by the elution procedure. Iron ions were successfully eluted from IIPs using a mixed solution from ethanol and acetic acid. The maximum adsorption capacity of Iron-IIPs was is (514.5)µmol/g for Iron-IIP1(using styrene as a monomer) and (429.1) µmol/g for Iron-IIP2(using 1-vinyl imidazole as a monomer). The adsorption by Iron-IIPs followed a Langmuir isotherm models. Solid-phase extraction (SPE) syringe packed with ionic imprinted polymers (IIPs) were used to selective separation for Iron ion from Crude or fuel oil and digest the polymer to determination the Iron by flame atomic absorption spectroscopy (FAAS) Abbreviation IIP-SPE-FAAS.