希尔伯特空间中分数布朗运动驱动的随机Volterra积分微分方程

Pub Date : 2015-01-02 DOI:10.1080/17442508.2014.924938
N. Dung
{"title":"希尔伯特空间中分数布朗运动驱动的随机Volterra积分微分方程","authors":"N. Dung","doi":"10.1080/17442508.2014.924938","DOIUrl":null,"url":null,"abstract":"In this article, we consider a class of stochastic Volterra integro-differential equations with infinite delay and impulsive effects, driven by fractional Brownian motion with the Hurst index in a Hilbert space. The cases of Lipschitz and bounded impulses are studied separately. The existence and uniqueness of mild solutions are proved by using different fixed-point theorems. An example is given to illustrate the theory.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Stochastic Volterra integro-differential equations driven by fractional Brownian motion in a Hilbert space\",\"authors\":\"N. Dung\",\"doi\":\"10.1080/17442508.2014.924938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider a class of stochastic Volterra integro-differential equations with infinite delay and impulsive effects, driven by fractional Brownian motion with the Hurst index in a Hilbert space. The cases of Lipschitz and bounded impulses are studied separately. The existence and uniqueness of mild solutions are proved by using different fixed-point theorems. An example is given to illustrate the theory.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2014.924938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.924938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们考虑了Hilbert空间中一类具有无限延迟和脉冲效应的随机Volterra积分微分方程,该方程由带有Hurst指标的分数阶布朗运动驱动。分别研究了Lipschitz脉冲和有界脉冲的情况。利用不同的不动点定理证明了温和解的存在唯一性。给出了一个例子来说明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stochastic Volterra integro-differential equations driven by fractional Brownian motion in a Hilbert space
In this article, we consider a class of stochastic Volterra integro-differential equations with infinite delay and impulsive effects, driven by fractional Brownian motion with the Hurst index in a Hilbert space. The cases of Lipschitz and bounded impulses are studied separately. The existence and uniqueness of mild solutions are proved by using different fixed-point theorems. An example is given to illustrate the theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信