mw -动力上同调中的射影束定理

IF 0.9 3区 数学 Q2 MATHEMATICS
N. Yang
{"title":"mw -动力上同调中的射影束定理","authors":"N. Yang","doi":"10.4171/dm/835","DOIUrl":null,"url":null,"abstract":"We present a version of projective bundle theorem in MW-motives (resp. Chow-Witt rings), which says that $\\widetilde{CH}^*(\\mathbb{P}(E))$ is determined by $\\widetilde{CH}^*(X)$ and $\\widetilde{CH}^*(X\\times\\mathbb{P}^2)$ for smooth quasi-projective schemes $X$ and vector bundles $E$ over $X$ with odd rank. If the rank of $E$ is even, the theorem is still true under a new kind of orientability, which we call it by projective orientability. \nAs an application, we compute the MW-motives of blow-up over smooth centers.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"5 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Projective bundle theorem in MW-motivic cohomology\",\"authors\":\"N. Yang\",\"doi\":\"10.4171/dm/835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a version of projective bundle theorem in MW-motives (resp. Chow-Witt rings), which says that $\\\\widetilde{CH}^*(\\\\mathbb{P}(E))$ is determined by $\\\\widetilde{CH}^*(X)$ and $\\\\widetilde{CH}^*(X\\\\times\\\\mathbb{P}^2)$ for smooth quasi-projective schemes $X$ and vector bundles $E$ over $X$ with odd rank. If the rank of $E$ is even, the theorem is still true under a new kind of orientability, which we call it by projective orientability. \\nAs an application, we compute the MW-motives of blow-up over smooth centers.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/dm/835\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/835","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

本文给出了mw -动机中射影束定理的一个版本。周氏环),这表明$\ widdetilde {CH}^*(\mathbb{P}(E))$是由$\ widdetilde {CH}^*(X)$和$\ widdetilde {CH}^*(X\乘以\mathbb{P}^2)$决定的,对于光滑拟射光方案$X$和向量束$E$ / $X$具有奇数秩。如果$E$的秩是偶的,则在一种新的可定向性下定理仍然成立,我们称之为射影可定向性。作为应用,我们计算了在光滑中心上爆炸的毫瓦动机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projective bundle theorem in MW-motivic cohomology
We present a version of projective bundle theorem in MW-motives (resp. Chow-Witt rings), which says that $\widetilde{CH}^*(\mathbb{P}(E))$ is determined by $\widetilde{CH}^*(X)$ and $\widetilde{CH}^*(X\times\mathbb{P}^2)$ for smooth quasi-projective schemes $X$ and vector bundles $E$ over $X$ with odd rank. If the rank of $E$ is even, the theorem is still true under a new kind of orientability, which we call it by projective orientability. As an application, we compute the MW-motives of blow-up over smooth centers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信