{"title":"基于聚类层次聚类方法的公共卫生水平确定系统","authors":"S. Suhirman, Hero Wintolo","doi":"10.28989/COMPILER.V8I1.425","DOIUrl":null,"url":null,"abstract":"Regions having higher level of welfare do not always have better indicator values than other regions having lower level of welfare. The problem is the lack of information related to the indicator values needed to determine the health level. Therefore, clustering using health data becomes necessary. Data were clustered to see the maximum or the minimum level of similarity. The clustered data were based on the similarity of four morality indicator values of the regional health level. Morality indicator values used in this research are infant mortality rate, child mortality rate, maternal mortality rate, and rough birth rate. The method used is Agglomerative Hierarchical Clustering (AHC) - Complete Linkage. Data were calculated using Euclidean Distance Equation, then Complete Linkage. Four clustered data were grouped into two clusters, healthy and/or unhealthy. The result, combining from all clusters into two large clusters to see healthy and unhealthy results.","PeriodicalId":93739,"journal":{"name":"Compiler construction : ... International Conference, CC ... : proceedings. CC (Conference)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"System for Determining Public Health Level Using the Agglomerative Hierarchical Clustering Method\",\"authors\":\"S. Suhirman, Hero Wintolo\",\"doi\":\"10.28989/COMPILER.V8I1.425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regions having higher level of welfare do not always have better indicator values than other regions having lower level of welfare. The problem is the lack of information related to the indicator values needed to determine the health level. Therefore, clustering using health data becomes necessary. Data were clustered to see the maximum or the minimum level of similarity. The clustered data were based on the similarity of four morality indicator values of the regional health level. Morality indicator values used in this research are infant mortality rate, child mortality rate, maternal mortality rate, and rough birth rate. The method used is Agglomerative Hierarchical Clustering (AHC) - Complete Linkage. Data were calculated using Euclidean Distance Equation, then Complete Linkage. Four clustered data were grouped into two clusters, healthy and/or unhealthy. The result, combining from all clusters into two large clusters to see healthy and unhealthy results.\",\"PeriodicalId\":93739,\"journal\":{\"name\":\"Compiler construction : ... International Conference, CC ... : proceedings. CC (Conference)\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compiler construction : ... International Conference, CC ... : proceedings. CC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28989/COMPILER.V8I1.425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compiler construction : ... International Conference, CC ... : proceedings. CC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28989/COMPILER.V8I1.425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
System for Determining Public Health Level Using the Agglomerative Hierarchical Clustering Method
Regions having higher level of welfare do not always have better indicator values than other regions having lower level of welfare. The problem is the lack of information related to the indicator values needed to determine the health level. Therefore, clustering using health data becomes necessary. Data were clustered to see the maximum or the minimum level of similarity. The clustered data were based on the similarity of four morality indicator values of the regional health level. Morality indicator values used in this research are infant mortality rate, child mortality rate, maternal mortality rate, and rough birth rate. The method used is Agglomerative Hierarchical Clustering (AHC) - Complete Linkage. Data were calculated using Euclidean Distance Equation, then Complete Linkage. Four clustered data were grouped into two clusters, healthy and/or unhealthy. The result, combining from all clusters into two large clusters to see healthy and unhealthy results.