基于聚类层次聚类方法的公共卫生水平确定系统

S. Suhirman, Hero Wintolo
{"title":"基于聚类层次聚类方法的公共卫生水平确定系统","authors":"S. Suhirman, Hero Wintolo","doi":"10.28989/COMPILER.V8I1.425","DOIUrl":null,"url":null,"abstract":"Regions having higher level of welfare do not always have better indicator values than other regions having lower level of welfare. The problem is the lack of information related to the indicator values needed to determine the health level. Therefore, clustering using health data becomes necessary. Data were clustered to see the maximum or the minimum level of similarity. The clustered data were based on the similarity of four morality indicator values of the regional health level. Morality indicator values used in this research are infant mortality rate, child mortality rate, maternal mortality rate, and rough birth rate. The method used is Agglomerative Hierarchical Clustering (AHC) - Complete Linkage. Data were calculated using Euclidean Distance Equation, then Complete Linkage. Four clustered data were grouped into two clusters, healthy and/or unhealthy. The result, combining from all clusters into two large clusters to see healthy and unhealthy results.","PeriodicalId":93739,"journal":{"name":"Compiler construction : ... International Conference, CC ... : proceedings. CC (Conference)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"System for Determining Public Health Level Using the Agglomerative Hierarchical Clustering Method\",\"authors\":\"S. Suhirman, Hero Wintolo\",\"doi\":\"10.28989/COMPILER.V8I1.425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regions having higher level of welfare do not always have better indicator values than other regions having lower level of welfare. The problem is the lack of information related to the indicator values needed to determine the health level. Therefore, clustering using health data becomes necessary. Data were clustered to see the maximum or the minimum level of similarity. The clustered data were based on the similarity of four morality indicator values of the regional health level. Morality indicator values used in this research are infant mortality rate, child mortality rate, maternal mortality rate, and rough birth rate. The method used is Agglomerative Hierarchical Clustering (AHC) - Complete Linkage. Data were calculated using Euclidean Distance Equation, then Complete Linkage. Four clustered data were grouped into two clusters, healthy and/or unhealthy. The result, combining from all clusters into two large clusters to see healthy and unhealthy results.\",\"PeriodicalId\":93739,\"journal\":{\"name\":\"Compiler construction : ... International Conference, CC ... : proceedings. CC (Conference)\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compiler construction : ... International Conference, CC ... : proceedings. CC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28989/COMPILER.V8I1.425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compiler construction : ... International Conference, CC ... : proceedings. CC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28989/COMPILER.V8I1.425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

福利水平较高的地区并不总是比其他福利水平较低的地区有更好的指标值。问题是缺乏与确定健康水平所需的指标值有关的信息。因此,有必要使用健康数据进行聚类。将数据聚类以查看最大或最小相似度。聚类数据基于区域卫生水平四个道德指标值的相似度。本研究使用的道德指标值为婴儿死亡率、儿童死亡率、产妇死亡率和粗出生率。使用的方法是聚集分层聚类(AHC) -完全链接。利用欧几里得距离方程计算数据,然后进行完全联动。四组数据分为健康和/或不健康两组。结果,将所有集群合并为两个大集群,以查看健康和不健康的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
System for Determining Public Health Level Using the Agglomerative Hierarchical Clustering Method
Regions having higher level of welfare do not always have better indicator values than other regions having lower level of welfare. The problem is the lack of information related to the indicator values needed to determine the health level. Therefore, clustering using health data becomes necessary. Data were clustered to see the maximum or the minimum level of similarity. The clustered data were based on the similarity of four morality indicator values of the regional health level. Morality indicator values used in this research are infant mortality rate, child mortality rate, maternal mortality rate, and rough birth rate. The method used is Agglomerative Hierarchical Clustering (AHC) - Complete Linkage. Data were calculated using Euclidean Distance Equation, then Complete Linkage. Four clustered data were grouped into two clusters, healthy and/or unhealthy. The result, combining from all clusters into two large clusters to see healthy and unhealthy results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信