基于shearlet的简化参考图像质量评估

S. Bosse, Qiaobo Chen, Mischa Siekmann, W. Samek, T. Wiegand
{"title":"基于shearlet的简化参考图像质量评估","authors":"S. Bosse, Qiaobo Chen, Mischa Siekmann, W. Samek, T. Wiegand","doi":"10.1109/ICIP.2016.7532719","DOIUrl":null,"url":null,"abstract":"This paper proposes a reduced reference image quality assessment method using only a low number of features. It involves a shearlet decomposition, directional pooling of the obtained coefficient and extracts the scalewise statistical location parameter as a feature. The proposed method is tested and compared to similar approaches on the LIVE image database. On this database it outperforms the compared methods on five of seven distortion types and on the full testset with a linear correlation of = 0.89.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"27 1","pages":"2052-2056"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Shearlet-based reduced reference image quality assessment\",\"authors\":\"S. Bosse, Qiaobo Chen, Mischa Siekmann, W. Samek, T. Wiegand\",\"doi\":\"10.1109/ICIP.2016.7532719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a reduced reference image quality assessment method using only a low number of features. It involves a shearlet decomposition, directional pooling of the obtained coefficient and extracts the scalewise statistical location parameter as a feature. The proposed method is tested and compared to similar approaches on the LIVE image database. On this database it outperforms the compared methods on five of seven distortion types and on the full testset with a linear correlation of = 0.89.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"27 1\",\"pages\":\"2052-2056\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种仅使用少量特征的简化参考图像质量评估方法。它涉及剪切波分解,对得到的系数进行定向池化,并提取按比例的统计位置参数作为特征。在LIVE图像数据库上对该方法进行了测试,并与类似方法进行了比较。在这个数据库中,它在7种失真类型中的5种和完整测试集上的性能优于比较方法,线性相关性为0.89。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shearlet-based reduced reference image quality assessment
This paper proposes a reduced reference image quality assessment method using only a low number of features. It involves a shearlet decomposition, directional pooling of the obtained coefficient and extracts the scalewise statistical location parameter as a feature. The proposed method is tested and compared to similar approaches on the LIVE image database. On this database it outperforms the compared methods on five of seven distortion types and on the full testset with a linear correlation of = 0.89.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信