一种基于基因本体的混合语义相似度计算方法

Lizhen Liu, Xuemin Dai, Chao Du, Hanshi Wang, Jingli Lu
{"title":"一种基于基因本体的混合语义相似度计算方法","authors":"Lizhen Liu, Xuemin Dai, Chao Du, Hanshi Wang, Jingli Lu","doi":"10.1109/ICSESS.2014.6933699","DOIUrl":null,"url":null,"abstract":"Most existing methods used for computing semantic similarity don't take full consideration of related factors, therefore they not only fail to handle identical annotations but also show a strong bias toward well-annotated gene or gene products. Concerning these problems, we proposed a new hybrid method based on multiple factors that affect the semantic similarity of Gene Ontology (GO) terms. The new method integrated information content and the structure of GO to compute the semantic similarity of GO terms, which overcomes some serious drawbacks of pure node-based methods and edge-based methods. Experimental results demonstrate that the new method has high accuracy.","PeriodicalId":6473,"journal":{"name":"2014 IEEE 5th International Conference on Software Engineering and Service Science","volume":"27 1","pages":"849-853"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new hybrid semantic similarity computation method based on gene ontology\",\"authors\":\"Lizhen Liu, Xuemin Dai, Chao Du, Hanshi Wang, Jingli Lu\",\"doi\":\"10.1109/ICSESS.2014.6933699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing methods used for computing semantic similarity don't take full consideration of related factors, therefore they not only fail to handle identical annotations but also show a strong bias toward well-annotated gene or gene products. Concerning these problems, we proposed a new hybrid method based on multiple factors that affect the semantic similarity of Gene Ontology (GO) terms. The new method integrated information content and the structure of GO to compute the semantic similarity of GO terms, which overcomes some serious drawbacks of pure node-based methods and edge-based methods. Experimental results demonstrate that the new method has high accuracy.\",\"PeriodicalId\":6473,\"journal\":{\"name\":\"2014 IEEE 5th International Conference on Software Engineering and Service Science\",\"volume\":\"27 1\",\"pages\":\"849-853\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 5th International Conference on Software Engineering and Service Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2014.6933699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 5th International Conference on Software Engineering and Service Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2014.6933699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现有的计算语义相似度的方法大多没有充分考虑相关因素,不仅不能处理相同的标注,而且对标注好的基因或基因产物有强烈的偏见。针对这些问题,我们提出了一种基于影响基因本体(Gene Ontology, GO)术语语义相似度的多种因素的混合方法。该方法将GO的信息内容与GO的结构相结合,计算GO术语的语义相似度,克服了纯基于节点和基于边缘的方法存在的严重缺陷。实验结果表明,该方法具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new hybrid semantic similarity computation method based on gene ontology
Most existing methods used for computing semantic similarity don't take full consideration of related factors, therefore they not only fail to handle identical annotations but also show a strong bias toward well-annotated gene or gene products. Concerning these problems, we proposed a new hybrid method based on multiple factors that affect the semantic similarity of Gene Ontology (GO) terms. The new method integrated information content and the structure of GO to compute the semantic similarity of GO terms, which overcomes some serious drawbacks of pure node-based methods and edge-based methods. Experimental results demonstrate that the new method has high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信