基于残差RAKI的快速MRI扫描特异性残差卷积神经网络

Chi Zhang, S. A. Hosseini, S. Moeller, Sebastian Weingärtner, K. Uğurbil, M. Akçakaya
{"title":"基于残差RAKI的快速MRI扫描特异性残差卷积神经网络","authors":"Chi Zhang, S. A. Hosseini, S. Moeller, Sebastian Weingärtner, K. Uğurbil, M. Akçakaya","doi":"10.1109/IEEECONF44664.2019.9048706","DOIUrl":null,"url":null,"abstract":"Parallel imaging is a widely-used acceleration technique for magnetic resonance imaging (MRI). Conventional linear reconstruction approaches in parallel imaging suffer from noise amplification. Recently, a non-linear method that utilizes subject- specific convolutional neural networks for k-space reconstruction, Robust Artificial-neural-networks for k-space Interpolation (RAKI) was proposed and shown to improve noise resilience over linear methods. However, the linear convolutions still provide a sufficient baseline image quality and interpretability. In this paper, we sought to utilize a residual network architecture to combine the benefits of both the linear and non-linear RAKI reconstructions. This hybrid method, called residual RAKI (rRAKI) offers significant improvement in image quality compared to linear method, and improves upon RAKI in highly- accelerated simultaneous multi-slice imaging. Furthermore, it establishes an interpretable view for the use of CNNs in parallel imaging, as the CNN component in the residual network removes the noise amplification arising from the linear part.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"9 1","pages":"1476-1480"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Scan-Specific Residual Convolutional Neural Networks for Fast MRI Using Residual RAKI\",\"authors\":\"Chi Zhang, S. A. Hosseini, S. Moeller, Sebastian Weingärtner, K. Uğurbil, M. Akçakaya\",\"doi\":\"10.1109/IEEECONF44664.2019.9048706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel imaging is a widely-used acceleration technique for magnetic resonance imaging (MRI). Conventional linear reconstruction approaches in parallel imaging suffer from noise amplification. Recently, a non-linear method that utilizes subject- specific convolutional neural networks for k-space reconstruction, Robust Artificial-neural-networks for k-space Interpolation (RAKI) was proposed and shown to improve noise resilience over linear methods. However, the linear convolutions still provide a sufficient baseline image quality and interpretability. In this paper, we sought to utilize a residual network architecture to combine the benefits of both the linear and non-linear RAKI reconstructions. This hybrid method, called residual RAKI (rRAKI) offers significant improvement in image quality compared to linear method, and improves upon RAKI in highly- accelerated simultaneous multi-slice imaging. Furthermore, it establishes an interpretable view for the use of CNNs in parallel imaging, as the CNN component in the residual network removes the noise amplification arising from the linear part.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"9 1\",\"pages\":\"1476-1480\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

平行成像是一种应用广泛的磁共振成像加速技术。传统的并行成像线性重建方法存在噪声放大的问题。最近,一种利用特定对象卷积神经网络进行k空间重建的非线性方法——鲁棒人工神经网络用于k空间插值(RAKI)被提出,并被证明比线性方法能提高噪声恢复能力。然而,线性卷积仍然提供了足够的基线图像质量和可解释性。在本文中,我们试图利用残差网络架构来结合线性和非线性RAKI重建的优点。这种混合方法被称为残差RAKI (rRAKI),与线性方法相比,它在图像质量上有了显著的改善,并在高加速同步多层成像中改进了RAKI。此外,由于残差网络中的CNN分量消除了线性部分产生的噪声放大,因此为CNN在并行成像中的使用建立了一个可解释的视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scan-Specific Residual Convolutional Neural Networks for Fast MRI Using Residual RAKI
Parallel imaging is a widely-used acceleration technique for magnetic resonance imaging (MRI). Conventional linear reconstruction approaches in parallel imaging suffer from noise amplification. Recently, a non-linear method that utilizes subject- specific convolutional neural networks for k-space reconstruction, Robust Artificial-neural-networks for k-space Interpolation (RAKI) was proposed and shown to improve noise resilience over linear methods. However, the linear convolutions still provide a sufficient baseline image quality and interpretability. In this paper, we sought to utilize a residual network architecture to combine the benefits of both the linear and non-linear RAKI reconstructions. This hybrid method, called residual RAKI (rRAKI) offers significant improvement in image quality compared to linear method, and improves upon RAKI in highly- accelerated simultaneous multi-slice imaging. Furthermore, it establishes an interpretable view for the use of CNNs in parallel imaging, as the CNN component in the residual network removes the noise amplification arising from the linear part.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信