维纳函数类的比较

F. Maeda
{"title":"维纳函数类的比较","authors":"F. Maeda","doi":"10.32917/HMJ/1206138532","DOIUrl":null,"url":null,"abstract":"For a harmonic space satisfying the axioms of M. Brelot [ΊΓ|, one can define the notion of Wiener functions as a generalization of that for a Riemann surface or a Green space (see [2]). The class of Wiener functions may be used to see global properties of the harmonic space in particular, in order to show that a compactification of the base space be resolutive with respect to the Dirichlet problem, it is enough to verify that every continuous function on the compactification is a Wiener function (see Theorem 4.4 in [2]). Thus, given two harmonic structures ξ>i and ξ>2 on the same base space Ω, it may be useful to know when the inclusion BWCBW holds, where BW(i = l, 2) is the class of bounded Wiener functions with respect to φ, (ϊ = l, 2). In this paper, we shall give a sufficient condition for the above inclusion, which includes the conditions given in [4] and [5] for special cases.","PeriodicalId":17080,"journal":{"name":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","volume":"1 1","pages":"231-235"},"PeriodicalIF":0.0000,"publicationDate":"1969-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of the classes of Wiener functions\",\"authors\":\"F. Maeda\",\"doi\":\"10.32917/HMJ/1206138532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a harmonic space satisfying the axioms of M. Brelot [ΊΓ|, one can define the notion of Wiener functions as a generalization of that for a Riemann surface or a Green space (see [2]). The class of Wiener functions may be used to see global properties of the harmonic space in particular, in order to show that a compactification of the base space be resolutive with respect to the Dirichlet problem, it is enough to verify that every continuous function on the compactification is a Wiener function (see Theorem 4.4 in [2]). Thus, given two harmonic structures ξ>i and ξ>2 on the same base space Ω, it may be useful to know when the inclusion BWCBW holds, where BW(i = l, 2) is the class of bounded Wiener functions with respect to φ, (ϊ = l, 2). In this paper, we shall give a sufficient condition for the above inclusion, which includes the conditions given in [4] and [5] for special cases.\",\"PeriodicalId\":17080,\"journal\":{\"name\":\"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry\",\"volume\":\"1 1\",\"pages\":\"231-235\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1969-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32917/HMJ/1206138532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/HMJ/1206138532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于满足M. Brelot [ΊΓ|]公理的调和空间,可以将维纳函数的概念定义为黎曼曲面或格林空间(见[2])的推广。维纳函数类可以用来研究调和空间的全局性质,为了证明基空间的紧化对于Dirichlet问题是可解的,只要证明在紧化上的每一个连续函数都是维纳函数就足够了(见[2]中的定理4.4)。因此,给定同一个基空间Ω上的两个调和结构ξ>i和ξ>2,我们可以知道包含BWCBW何时成立,其中BW(i = l, 2)是关于φ, (ι = l, 2)的有界Wiener函数类。本文给出了上述包含的一个充分条件,其中包括[4]和[5]中给出的特殊情况的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of the classes of Wiener functions
For a harmonic space satisfying the axioms of M. Brelot [ΊΓ|, one can define the notion of Wiener functions as a generalization of that for a Riemann surface or a Green space (see [2]). The class of Wiener functions may be used to see global properties of the harmonic space in particular, in order to show that a compactification of the base space be resolutive with respect to the Dirichlet problem, it is enough to verify that every continuous function on the compactification is a Wiener function (see Theorem 4.4 in [2]). Thus, given two harmonic structures ξ>i and ξ>2 on the same base space Ω, it may be useful to know when the inclusion BWCBW holds, where BW(i = l, 2) is the class of bounded Wiener functions with respect to φ, (ϊ = l, 2). In this paper, we shall give a sufficient condition for the above inclusion, which includes the conditions given in [4] and [5] for special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信