李超代数的三个理想

Pub Date : 2022-01-13 DOI:10.1142/s1005386722000116
Xiaodong Zhao, Liangyun Chen
{"title":"李超代数的三个理想","authors":"Xiaodong Zhao, Liangyun Chen","doi":"10.1142/s1005386722000116","DOIUrl":null,"url":null,"abstract":"We define perfect ideals, near perfect ideals and upper bounded ideals of a finite-dimensional Lie superalgebra, and study the properties of these three kinds of ideals through their relevant sequences. We prove that a Lie superalgebra is solvable if and only if its maximal perfect ideal is zero, or its quotient superalgebra by the maximal perfect ideal is solvable. We also show that a Lie superalgebra is nilpotent if and only if its maximal near perfect ideal is zero. Moreover, we prove that a nilpotent Lie superalgebra has only one upper bounded ideal, which is the nilpotent Lie superalgebra itself.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three Ideals of Lie Superalgebras\",\"authors\":\"Xiaodong Zhao, Liangyun Chen\",\"doi\":\"10.1142/s1005386722000116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define perfect ideals, near perfect ideals and upper bounded ideals of a finite-dimensional Lie superalgebra, and study the properties of these three kinds of ideals through their relevant sequences. We prove that a Lie superalgebra is solvable if and only if its maximal perfect ideal is zero, or its quotient superalgebra by the maximal perfect ideal is solvable. We also show that a Lie superalgebra is nilpotent if and only if its maximal near perfect ideal is zero. Moreover, we prove that a nilpotent Lie superalgebra has only one upper bounded ideal, which is the nilpotent Lie superalgebra itself.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定义了有限维李超代数的完美理想、近完美理想和上界理想,并通过它们的相关序列研究了这三种理想的性质。证明了李超代数是可解的,当且仅当其最大完美理想为零,或其最大完美理想的商超代数是可解的。我们还证明了李超代数是幂零的当且仅当它的极大接近完美理想为零。并且证明了一个幂零李超代数只有一个上界理想,这个上界理想就是幂零李超代数本身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Three Ideals of Lie Superalgebras
We define perfect ideals, near perfect ideals and upper bounded ideals of a finite-dimensional Lie superalgebra, and study the properties of these three kinds of ideals through their relevant sequences. We prove that a Lie superalgebra is solvable if and only if its maximal perfect ideal is zero, or its quotient superalgebra by the maximal perfect ideal is solvable. We also show that a Lie superalgebra is nilpotent if and only if its maximal near perfect ideal is zero. Moreover, we prove that a nilpotent Lie superalgebra has only one upper bounded ideal, which is the nilpotent Lie superalgebra itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信