{"title":"李超代数的三个理想","authors":"Xiaodong Zhao, Liangyun Chen","doi":"10.1142/s1005386722000116","DOIUrl":null,"url":null,"abstract":"We define perfect ideals, near perfect ideals and upper bounded ideals of a finite-dimensional Lie superalgebra, and study the properties of these three kinds of ideals through their relevant sequences. We prove that a Lie superalgebra is solvable if and only if its maximal perfect ideal is zero, or its quotient superalgebra by the maximal perfect ideal is solvable. We also show that a Lie superalgebra is nilpotent if and only if its maximal near perfect ideal is zero. Moreover, we prove that a nilpotent Lie superalgebra has only one upper bounded ideal, which is the nilpotent Lie superalgebra itself.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three Ideals of Lie Superalgebras\",\"authors\":\"Xiaodong Zhao, Liangyun Chen\",\"doi\":\"10.1142/s1005386722000116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define perfect ideals, near perfect ideals and upper bounded ideals of a finite-dimensional Lie superalgebra, and study the properties of these three kinds of ideals through their relevant sequences. We prove that a Lie superalgebra is solvable if and only if its maximal perfect ideal is zero, or its quotient superalgebra by the maximal perfect ideal is solvable. We also show that a Lie superalgebra is nilpotent if and only if its maximal near perfect ideal is zero. Moreover, we prove that a nilpotent Lie superalgebra has only one upper bounded ideal, which is the nilpotent Lie superalgebra itself.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We define perfect ideals, near perfect ideals and upper bounded ideals of a finite-dimensional Lie superalgebra, and study the properties of these three kinds of ideals through their relevant sequences. We prove that a Lie superalgebra is solvable if and only if its maximal perfect ideal is zero, or its quotient superalgebra by the maximal perfect ideal is solvable. We also show that a Lie superalgebra is nilpotent if and only if its maximal near perfect ideal is zero. Moreover, we prove that a nilpotent Lie superalgebra has only one upper bounded ideal, which is the nilpotent Lie superalgebra itself.