将有限记忆确定性扩展到多人游戏

Hkhmt m`Sr Pub Date : 2016-02-29 DOI:10.4204/EPTCS.218.3
Stéphane Le Roux, A. Pauly
{"title":"将有限记忆确定性扩展到多人游戏","authors":"Stéphane Le Roux, A. Pauly","doi":"10.4204/EPTCS.218.3","DOIUrl":null,"url":null,"abstract":"We show that under some general conditions the finite memory determinacy of a class of two-player win/lose games played on finite graphs implies the existence of a Nash equilibrium built from finite memory strategies for the corresponding class of multi-player multi-outcome games. This generalizes a previous result by Brihaye, De Pril and Schewe. For most of our conditions we provide counterexamples showing that they cannot be dispensed with. \nOur proofs are generally constructive, that is, provide upper bounds for the memory required, as well as algorithms to compute the relevant winning strategies.","PeriodicalId":53035,"journal":{"name":"Hkhmt m`Sr","volume":"5 1","pages":"27-40"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Extending Finite Memory Determinacy to Multiplayer Games\",\"authors\":\"Stéphane Le Roux, A. Pauly\",\"doi\":\"10.4204/EPTCS.218.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that under some general conditions the finite memory determinacy of a class of two-player win/lose games played on finite graphs implies the existence of a Nash equilibrium built from finite memory strategies for the corresponding class of multi-player multi-outcome games. This generalizes a previous result by Brihaye, De Pril and Schewe. For most of our conditions we provide counterexamples showing that they cannot be dispensed with. \\nOur proofs are generally constructive, that is, provide upper bounds for the memory required, as well as algorithms to compute the relevant winning strategies.\",\"PeriodicalId\":53035,\"journal\":{\"name\":\"Hkhmt m`Sr\",\"volume\":\"5 1\",\"pages\":\"27-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hkhmt m`Sr\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.218.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hkhmt m`Sr","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.218.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们证明了在某些一般条件下,一类在有限图上进行的双人输赢博弈的有限记忆确定性意味着存在一个由有限记忆策略构建的纳什均衡,用于相应的一类多人多结果博弈。这概括了Brihaye, De Pril和Schewe之前的结果。对于我们的大多数条件,我们提供了反例,表明它们是不可缺少的。我们的证明通常是建设性的,也就是说,提供了所需内存的上限,以及计算相关获胜策略的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending Finite Memory Determinacy to Multiplayer Games
We show that under some general conditions the finite memory determinacy of a class of two-player win/lose games played on finite graphs implies the existence of a Nash equilibrium built from finite memory strategies for the corresponding class of multi-player multi-outcome games. This generalizes a previous result by Brihaye, De Pril and Schewe. For most of our conditions we provide counterexamples showing that they cannot be dispensed with. Our proofs are generally constructive, that is, provide upper bounds for the memory required, as well as algorithms to compute the relevant winning strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信