{"title":"气候变化下的追踪恢复:浮游植物和无脊椎动物群落对酸化减少的响应","authors":"Richard K. Johnson, D. Angeler","doi":"10.1899/09-171.1","DOIUrl":null,"url":null,"abstract":"Abstract Phytoplankton and littoral invertebrate assemblages in 4 boreal lakes recovering from acidification and 4 minimally disturbed reference lakes studied over 2 decades were used to determine the pathways and trajectories of change under the influence of climatic variability. Assemblage composition (species presence–absence data) but not dominance patterns (invertebrate abundance/phytoplankton biovolume) of acidified lakes became more similar to those of reference lakes (distance decreased with time), indicating that detection of recovery varies as a function of chosen metrics. Acidified lakes had more pronounced shifts in assemblage composition than did reference lakes. The most marked differences were noted for phytoplankton assemblages. Assemblages in acidified lakes had mean between-year Euclidean distances almost 2× greater than those of assemblages in reference lakes. Trends in water chemistry showed unequivocal recovery, but responses of phytoplankton and invertebrate assemblages, measured as between-year shifts in assemblage composition, were correlated with interannual variability in climate (e.g., North Atlantic Oscillation, water temperature) in addition to decreased acidity. The finding that recovery pathways and trajectories of individual acidified lakes and the environmental drivers explaining these changes differed among assemblages shows that biological recovery is complex and the influence of climatic variability is poorly understood.","PeriodicalId":49987,"journal":{"name":"Journal of the North American Benthological Society","volume":"5 1","pages":"1472 - 1490"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Tracing recovery under changing climate: response of phytoplankton and invertebrate assemblages to decreased acidification\",\"authors\":\"Richard K. Johnson, D. Angeler\",\"doi\":\"10.1899/09-171.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Phytoplankton and littoral invertebrate assemblages in 4 boreal lakes recovering from acidification and 4 minimally disturbed reference lakes studied over 2 decades were used to determine the pathways and trajectories of change under the influence of climatic variability. Assemblage composition (species presence–absence data) but not dominance patterns (invertebrate abundance/phytoplankton biovolume) of acidified lakes became more similar to those of reference lakes (distance decreased with time), indicating that detection of recovery varies as a function of chosen metrics. Acidified lakes had more pronounced shifts in assemblage composition than did reference lakes. The most marked differences were noted for phytoplankton assemblages. Assemblages in acidified lakes had mean between-year Euclidean distances almost 2× greater than those of assemblages in reference lakes. Trends in water chemistry showed unequivocal recovery, but responses of phytoplankton and invertebrate assemblages, measured as between-year shifts in assemblage composition, were correlated with interannual variability in climate (e.g., North Atlantic Oscillation, water temperature) in addition to decreased acidity. The finding that recovery pathways and trajectories of individual acidified lakes and the environmental drivers explaining these changes differed among assemblages shows that biological recovery is complex and the influence of climatic variability is poorly understood.\",\"PeriodicalId\":49987,\"journal\":{\"name\":\"Journal of the North American Benthological Society\",\"volume\":\"5 1\",\"pages\":\"1472 - 1490\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the North American Benthological Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1899/09-171.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the North American Benthological Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1899/09-171.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tracing recovery under changing climate: response of phytoplankton and invertebrate assemblages to decreased acidification
Abstract Phytoplankton and littoral invertebrate assemblages in 4 boreal lakes recovering from acidification and 4 minimally disturbed reference lakes studied over 2 decades were used to determine the pathways and trajectories of change under the influence of climatic variability. Assemblage composition (species presence–absence data) but not dominance patterns (invertebrate abundance/phytoplankton biovolume) of acidified lakes became more similar to those of reference lakes (distance decreased with time), indicating that detection of recovery varies as a function of chosen metrics. Acidified lakes had more pronounced shifts in assemblage composition than did reference lakes. The most marked differences were noted for phytoplankton assemblages. Assemblages in acidified lakes had mean between-year Euclidean distances almost 2× greater than those of assemblages in reference lakes. Trends in water chemistry showed unequivocal recovery, but responses of phytoplankton and invertebrate assemblages, measured as between-year shifts in assemblage composition, were correlated with interannual variability in climate (e.g., North Atlantic Oscillation, water temperature) in addition to decreased acidity. The finding that recovery pathways and trajectories of individual acidified lakes and the environmental drivers explaining these changes differed among assemblages shows that biological recovery is complex and the influence of climatic variability is poorly understood.