广义结构模型的光滑反拟合估计

R J. Pub Date : 2021-01-01 DOI:10.32614/rj-2021-042
J. Roca-Pardiñas, M. Rodríguez-Álvarez, S. Sperlich
{"title":"广义结构模型的光滑反拟合估计","authors":"J. Roca-Pardiñas, M. Rodríguez-Álvarez, S. Sperlich","doi":"10.32614/rj-2021-042","DOIUrl":null,"url":null,"abstract":"A package is introduced that provides the weighted smooth backfitting estimator for a large family of popular semiparametric regression models. This family is known as generalized structured models, comprising, for example, generalized varying coefficient model, generalized additive models, mixtures, potentially including parametric parts. The kernel based weighted smooth backfitting belongs to the statistically most efficient procedures for this model class. Its asymptotic properties are well understood thanks to the large body of literature about this estimator. The introduced weights allow for the inclusion of sampling weights, trimming, and efficient estimation under heteroscedasticity. Further options facilitate an easy handling of aggregated data, prediction, and the presentation of estimation results. Cross-validation methods are provided which can be used for model and bandwidth selection.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"13 1","pages":"330"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Package wsbackfit for Smooth Backfitting Estimation of Generalized Structured Models\",\"authors\":\"J. Roca-Pardiñas, M. Rodríguez-Álvarez, S. Sperlich\",\"doi\":\"10.32614/rj-2021-042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A package is introduced that provides the weighted smooth backfitting estimator for a large family of popular semiparametric regression models. This family is known as generalized structured models, comprising, for example, generalized varying coefficient model, generalized additive models, mixtures, potentially including parametric parts. The kernel based weighted smooth backfitting belongs to the statistically most efficient procedures for this model class. Its asymptotic properties are well understood thanks to the large body of literature about this estimator. The introduced weights allow for the inclusion of sampling weights, trimming, and efficient estimation under heteroscedasticity. Further options facilitate an easy handling of aggregated data, prediction, and the presentation of estimation results. Cross-validation methods are provided which can be used for model and bandwidth selection.\",\"PeriodicalId\":20974,\"journal\":{\"name\":\"R J.\",\"volume\":\"13 1\",\"pages\":\"330\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2021-042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2021-042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一个包,它提供了一大类流行的半参数回归模型的加权光滑反拟合估计。这个家族被称为广义结构模型,包括,例如,广义变系数模型,广义加性模型,混合物,可能包括参数部分。基于核的加权平滑反拟合是这类模型统计上最有效的方法。由于关于这个估计量的大量文献,它的渐近性质被很好地理解。引入的权重允许在异方差下包含抽样权重,修剪和有效估计。进一步的选项可以方便地处理聚合数据、预测和估计结果的表示。提出了可用于模型和带宽选择的交叉验证方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Package wsbackfit for Smooth Backfitting Estimation of Generalized Structured Models
A package is introduced that provides the weighted smooth backfitting estimator for a large family of popular semiparametric regression models. This family is known as generalized structured models, comprising, for example, generalized varying coefficient model, generalized additive models, mixtures, potentially including parametric parts. The kernel based weighted smooth backfitting belongs to the statistically most efficient procedures for this model class. Its asymptotic properties are well understood thanks to the large body of literature about this estimator. The introduced weights allow for the inclusion of sampling weights, trimming, and efficient estimation under heteroscedasticity. Further options facilitate an easy handling of aggregated data, prediction, and the presentation of estimation results. Cross-validation methods are provided which can be used for model and bandwidth selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信