{"title":"机械臂自适应变结构控制器","authors":"Jing Zhang, Xin Gao, En Li","doi":"10.1109/IFOST.2011.6021038","DOIUrl":null,"url":null,"abstract":"According to the typical nonlinearity characteristics of the manipulator system, a variable structure control (VSC) is proposed. In this paper, construct a nonlinear dynamic mathematical model for the manipulator system, using the nonlinear mathematical model of sliding surface integral design, with adaptive switching function strategies to estimate the parameters of the uncertain systems, adaptive control and sliding mode control together. The paper application variable structure, integral variable structure and adaptive variable structure control method of the manipulator system design, the simulation results show that this algorithm decreases the uncertainty, with smaller control gain, can effectively weaken system chattering.","PeriodicalId":20466,"journal":{"name":"Proceedings of 2011 6th International Forum on Strategic Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An adaptive variable structure controller for robotic manipulators\",\"authors\":\"Jing Zhang, Xin Gao, En Li\",\"doi\":\"10.1109/IFOST.2011.6021038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the typical nonlinearity characteristics of the manipulator system, a variable structure control (VSC) is proposed. In this paper, construct a nonlinear dynamic mathematical model for the manipulator system, using the nonlinear mathematical model of sliding surface integral design, with adaptive switching function strategies to estimate the parameters of the uncertain systems, adaptive control and sliding mode control together. The paper application variable structure, integral variable structure and adaptive variable structure control method of the manipulator system design, the simulation results show that this algorithm decreases the uncertainty, with smaller control gain, can effectively weaken system chattering.\",\"PeriodicalId\":20466,\"journal\":{\"name\":\"Proceedings of 2011 6th International Forum on Strategic Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 6th International Forum on Strategic Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFOST.2011.6021038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 6th International Forum on Strategic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFOST.2011.6021038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An adaptive variable structure controller for robotic manipulators
According to the typical nonlinearity characteristics of the manipulator system, a variable structure control (VSC) is proposed. In this paper, construct a nonlinear dynamic mathematical model for the manipulator system, using the nonlinear mathematical model of sliding surface integral design, with adaptive switching function strategies to estimate the parameters of the uncertain systems, adaptive control and sliding mode control together. The paper application variable structure, integral variable structure and adaptive variable structure control method of the manipulator system design, the simulation results show that this algorithm decreases the uncertainty, with smaller control gain, can effectively weaken system chattering.