改进COCOMO软件成本估算参数的遗传-环境混合自适应算法

T. Gandomani, Maedeh Dashti, Mina Ziaei Nafchi
{"title":"改进COCOMO软件成本估算参数的遗传-环境混合自适应算法","authors":"T. Gandomani, Maedeh Dashti, Mina Ziaei Nafchi","doi":"10.1109/dchpc55044.2022.9732107","DOIUrl":null,"url":null,"abstract":"The software cost estimation (SCE) problem is one of the major challenges in software engineering. Inaccurate cost and time estimation in a software project may lead to devastating damage to software companies. To deal with this issue, software researchers have made significant efforts during recent years to improve and modify the available SCE models, one widely-used model of which is the Constructive Cost Model (COCOMO). This research aims to optimize the coefficients of a standard COCOMO model for SCE by combining genetic algorithm (GA) and environmental adaptation (EA) methods. The results indicate that the EA algorithm can solve the divergence issue of the genetic algorithm and optimize the coefficients of the COCOMO model as well. Moreover, the accuracy of the SCE in the case of combining GA and EA algorithms is 8% higher than when these algorithms are separately adopted.","PeriodicalId":59014,"journal":{"name":"高性能计算技术","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Genetic-Environmental Adaptation Algorithm to Improve Parameters of COCOMO for Software Cost Estimation\",\"authors\":\"T. Gandomani, Maedeh Dashti, Mina Ziaei Nafchi\",\"doi\":\"10.1109/dchpc55044.2022.9732107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The software cost estimation (SCE) problem is one of the major challenges in software engineering. Inaccurate cost and time estimation in a software project may lead to devastating damage to software companies. To deal with this issue, software researchers have made significant efforts during recent years to improve and modify the available SCE models, one widely-used model of which is the Constructive Cost Model (COCOMO). This research aims to optimize the coefficients of a standard COCOMO model for SCE by combining genetic algorithm (GA) and environmental adaptation (EA) methods. The results indicate that the EA algorithm can solve the divergence issue of the genetic algorithm and optimize the coefficients of the COCOMO model as well. Moreover, the accuracy of the SCE in the case of combining GA and EA algorithms is 8% higher than when these algorithms are separately adopted.\",\"PeriodicalId\":59014,\"journal\":{\"name\":\"高性能计算技术\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"高性能计算技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/dchpc55044.2022.9732107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"高性能计算技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/dchpc55044.2022.9732107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软件成本估算(SCE)问题是软件工程中的主要挑战之一。在软件项目中,不准确的成本和时间估计可能会给软件公司带来毁灭性的损失。为了解决这一问题,近年来软件研究者对现有的SCE模型进行了大量的改进和修改,其中一个被广泛使用的模型是构建成本模型(COCOMO)。本研究旨在结合遗传算法(GA)和环境适应(EA)方法对SCE标准COCOMO模型的系数进行优化。结果表明,EA算法能够很好地解决遗传算法的发散问题,并对COCOMO模型的系数进行优化。同时,GA和EA算法联合使用的SCE精度比单独使用时提高了8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Genetic-Environmental Adaptation Algorithm to Improve Parameters of COCOMO for Software Cost Estimation
The software cost estimation (SCE) problem is one of the major challenges in software engineering. Inaccurate cost and time estimation in a software project may lead to devastating damage to software companies. To deal with this issue, software researchers have made significant efforts during recent years to improve and modify the available SCE models, one widely-used model of which is the Constructive Cost Model (COCOMO). This research aims to optimize the coefficients of a standard COCOMO model for SCE by combining genetic algorithm (GA) and environmental adaptation (EA) methods. The results indicate that the EA algorithm can solve the divergence issue of the genetic algorithm and optimize the coefficients of the COCOMO model as well. Moreover, the accuracy of the SCE in the case of combining GA and EA algorithms is 8% higher than when these algorithms are separately adopted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1121
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信