Rana Muhammad Adnan, Xiaohui Yuan, O. Kisi, Yanbin Yuan, Muhammad Tayyab, Xiaohui Lei
{"title":"软计算模型在水流预报中的应用","authors":"Rana Muhammad Adnan, Xiaohui Yuan, O. Kisi, Yanbin Yuan, Muhammad Tayyab, Xiaohui Lei","doi":"10.1680/JWAMA.16.00075","DOIUrl":null,"url":null,"abstract":"The accuracy of five soft computing techniques was assessed for the prediction of monthly streamflow of the Gilgit river basin by a cross-validation method. The five techniques assessed were the feed-forward neural network (FFNN), the radial basis neural network (RBNN), the generalised regression neural network (GRNN), the adaptive neuro fuzzy inference system with grid partition (Anfis-GP) and the adaptive neuro fuzzy inference system with subtractive clustering (Anfis-SC). The interaction between temperature and streamflow was considered in the study. Two statistical indexes, mean square error (MSE) and coefficient of determination (R2), were used to evaluate the performances of the models. In all applications, RBNN and Anfis-SC were found to give more accurate results than the FFNN, GRNN and Anfis-GP models. The effect of periodicity was also examined by adding a periodicity component into the applied models and the results were compared with a statistical model (seasonal autoregressive integrated movi...","PeriodicalId":54569,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Water Management","volume":"5 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Application of soft computing models in streamflow forecasting\",\"authors\":\"Rana Muhammad Adnan, Xiaohui Yuan, O. Kisi, Yanbin Yuan, Muhammad Tayyab, Xiaohui Lei\",\"doi\":\"10.1680/JWAMA.16.00075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy of five soft computing techniques was assessed for the prediction of monthly streamflow of the Gilgit river basin by a cross-validation method. The five techniques assessed were the feed-forward neural network (FFNN), the radial basis neural network (RBNN), the generalised regression neural network (GRNN), the adaptive neuro fuzzy inference system with grid partition (Anfis-GP) and the adaptive neuro fuzzy inference system with subtractive clustering (Anfis-SC). The interaction between temperature and streamflow was considered in the study. Two statistical indexes, mean square error (MSE) and coefficient of determination (R2), were used to evaluate the performances of the models. In all applications, RBNN and Anfis-SC were found to give more accurate results than the FFNN, GRNN and Anfis-GP models. The effect of periodicity was also examined by adding a periodicity component into the applied models and the results were compared with a statistical model (seasonal autoregressive integrated movi...\",\"PeriodicalId\":54569,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Water Management\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Water Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/JWAMA.16.00075\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Water Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/JWAMA.16.00075","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Application of soft computing models in streamflow forecasting
The accuracy of five soft computing techniques was assessed for the prediction of monthly streamflow of the Gilgit river basin by a cross-validation method. The five techniques assessed were the feed-forward neural network (FFNN), the radial basis neural network (RBNN), the generalised regression neural network (GRNN), the adaptive neuro fuzzy inference system with grid partition (Anfis-GP) and the adaptive neuro fuzzy inference system with subtractive clustering (Anfis-SC). The interaction between temperature and streamflow was considered in the study. Two statistical indexes, mean square error (MSE) and coefficient of determination (R2), were used to evaluate the performances of the models. In all applications, RBNN and Anfis-SC were found to give more accurate results than the FFNN, GRNN and Anfis-GP models. The effect of periodicity was also examined by adding a periodicity component into the applied models and the results were compared with a statistical model (seasonal autoregressive integrated movi...
期刊介绍:
Water Management publishes papers on all aspects of water treatment, water supply, river, wetland and catchment management, inland waterways and urban regeneration.
Topics covered: applied fluid dynamics and water (including supply, treatment and sewerage) and river engineering; together with the increasingly important fields of wetland and catchment management, groundwater and contaminated land, waterfront development and urban regeneration. The scope also covers hydroinformatics tools, risk and uncertainty methods, as well as environmental, social and economic issues relating to sustainable development.