Huber常数和Faltings函数的有效界

Muharem Avdispahić
{"title":"Huber常数和Faltings函数的有效界","authors":"Muharem Avdispahić","doi":"10.1090/MCOM/3631","DOIUrl":null,"url":null,"abstract":"By a closer inspection of the Friedman-Jorgenson-Kramer algorithm related to the prime geodesic theorem on cofinite Fuchsian groups of the first kind, we refine the constants therein. The newly obtained effective upper bound for Huber’s constant is in the modular surface case approximately \n\n \n 74000\n 74000\n \n\n-times smaller than the previously claimed one. The degree of reduction in the case of an upper bound for Faltings’s delta function ranges from \n\n \n \n 10\n \n 8\n \n \n 10^{8}\n \n\n to \n\n \n \n 10\n \n 16\n \n \n 10^{16}\n \n\n.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"42 1","pages":"2381-2414"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective bounds for Huber's constant and Faltings's delta function\",\"authors\":\"Muharem Avdispahić\",\"doi\":\"10.1090/MCOM/3631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By a closer inspection of the Friedman-Jorgenson-Kramer algorithm related to the prime geodesic theorem on cofinite Fuchsian groups of the first kind, we refine the constants therein. The newly obtained effective upper bound for Huber’s constant is in the modular surface case approximately \\n\\n \\n 74000\\n 74000\\n \\n\\n-times smaller than the previously claimed one. The degree of reduction in the case of an upper bound for Faltings’s delta function ranges from \\n\\n \\n \\n 10\\n \\n 8\\n \\n \\n 10^{8}\\n \\n\\n to \\n\\n \\n \\n 10\\n \\n 16\\n \\n \\n 10^{16}\\n \\n\\n.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"42 1\",\"pages\":\"2381-2414\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MCOM/3631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过对第一类有限Fuchsian群上与素数测地线定理有关的Friedman-Jorgenson-Kramer算法的仔细考察,我们改进了其中的常数。在模曲面情况下,新得到的Huber常数的有效上界比之前的有效上界小约74000 74000倍。法尔廷斯函数的上界的简化程度从10 8 10^{8}到10 16 10^{16}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective bounds for Huber's constant and Faltings's delta function
By a closer inspection of the Friedman-Jorgenson-Kramer algorithm related to the prime geodesic theorem on cofinite Fuchsian groups of the first kind, we refine the constants therein. The newly obtained effective upper bound for Huber’s constant is in the modular surface case approximately 74000 74000 -times smaller than the previously claimed one. The degree of reduction in the case of an upper bound for Faltings’s delta function ranges from 10 8 10^{8} to 10 16 10^{16} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信