采用基于负选择算法的数据分析方法监测动态系统的故障

Driely Candido Santos, M. Lopes, F. Chavarette, Bruno Ferreira Rossanês
{"title":"采用基于负选择算法的数据分析方法监测动态系统的故障","authors":"Driely Candido Santos, M. Lopes, F. Chavarette, Bruno Ferreira Rossanês","doi":"10.5747/ce.2021.v13.n2.e361","DOIUrl":null,"url":null,"abstract":"This work presents the application of a method for monitoring and diagnosing failures in mechanical structures based on the theory of vibration signals and on Artificial Immune Systems to assist in data processing. It uses the Negative Selection Algorithm as a tool to identify fault samples extracted from the laboratory simulated signals of a dynamic rotor. This methodology can help mechanical structure maintenance professionals, facilitating decision-making. The data set used in the processing of the intelligent system was generated through experiments. For normal (base-line) conditions, the signals of the rotor in free operation were used, that is, without the addition of unbalance mass, and for the fault conditions, unbalance masses were added to the system. The results are satisfactory, showing precision and robustness.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MONITORAMENTO DE FALHAS EM SISTEMAS DINÂMICOS UTILIZANDO UM MÉTODO DE ANÁLISE DE DADOS BASEADO NO ALGORITMO DE SELEÇÃO NEGATIVA\",\"authors\":\"Driely Candido Santos, M. Lopes, F. Chavarette, Bruno Ferreira Rossanês\",\"doi\":\"10.5747/ce.2021.v13.n2.e361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the application of a method for monitoring and diagnosing failures in mechanical structures based on the theory of vibration signals and on Artificial Immune Systems to assist in data processing. It uses the Negative Selection Algorithm as a tool to identify fault samples extracted from the laboratory simulated signals of a dynamic rotor. This methodology can help mechanical structure maintenance professionals, facilitating decision-making. The data set used in the processing of the intelligent system was generated through experiments. For normal (base-line) conditions, the signals of the rotor in free operation were used, that is, without the addition of unbalance mass, and for the fault conditions, unbalance masses were added to the system. The results are satisfactory, showing precision and robustness.\",\"PeriodicalId\":30414,\"journal\":{\"name\":\"Colloquium Exactarum\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Exactarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5747/ce.2021.v13.n2.e361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2021.v13.n2.e361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种基于振动信号理论和人工免疫系统的机械结构故障监测和诊断方法的应用,以协助数据处理。该方法以负选择算法为工具,从动态转子的实验室仿真信号中提取故障样本进行故障识别。这种方法可以帮助机械结构维修专业人员,便于决策。通过实验生成智能系统处理中使用的数据集。对于正常(基线)工况,采用转子自由运行时的信号,即不添加不平衡质量;对于故障工况,系统中添加不平衡质量。结果令人满意,具有较好的精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MONITORAMENTO DE FALHAS EM SISTEMAS DINÂMICOS UTILIZANDO UM MÉTODO DE ANÁLISE DE DADOS BASEADO NO ALGORITMO DE SELEÇÃO NEGATIVA
This work presents the application of a method for monitoring and diagnosing failures in mechanical structures based on the theory of vibration signals and on Artificial Immune Systems to assist in data processing. It uses the Negative Selection Algorithm as a tool to identify fault samples extracted from the laboratory simulated signals of a dynamic rotor. This methodology can help mechanical structure maintenance professionals, facilitating decision-making. The data set used in the processing of the intelligent system was generated through experiments. For normal (base-line) conditions, the signals of the rotor in free operation were used, that is, without the addition of unbalance mass, and for the fault conditions, unbalance masses were added to the system. The results are satisfactory, showing precision and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信