通过异常检测改进Web应用防火墙

Gustavo Betarte, Eduardo Giménez, R. Martínez, Álvaro Pardo
{"title":"通过异常检测改进Web应用防火墙","authors":"Gustavo Betarte, Eduardo Giménez, R. Martínez, Álvaro Pardo","doi":"10.1109/ICMLA.2018.00124","DOIUrl":null,"url":null,"abstract":"Web applications are permanently being exposed to attacks that exploit their vulnerabilities. In this work we investigate the application of machine learning techniques to leverage Web Application Firewalls (WAF)s, a technology that is used to detect and prevent attacks. We put forward an approach of complementary machine learning models, based on one-class classification and n-gram analysis, to enhance the detection and accuracy capabilities of MODSECURITY, an open source and widely used WAF. The results are promising and outperform MODSECURITY when configured with the OWASP Core Rule Set, the baseline configuration setting of a widely deployed, rule-based WAF technology.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"22 7 1","pages":"779-784"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Improving Web Application Firewalls through Anomaly Detection\",\"authors\":\"Gustavo Betarte, Eduardo Giménez, R. Martínez, Álvaro Pardo\",\"doi\":\"10.1109/ICMLA.2018.00124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web applications are permanently being exposed to attacks that exploit their vulnerabilities. In this work we investigate the application of machine learning techniques to leverage Web Application Firewalls (WAF)s, a technology that is used to detect and prevent attacks. We put forward an approach of complementary machine learning models, based on one-class classification and n-gram analysis, to enhance the detection and accuracy capabilities of MODSECURITY, an open source and widely used WAF. The results are promising and outperform MODSECURITY when configured with the OWASP Core Rule Set, the baseline configuration setting of a widely deployed, rule-based WAF technology.\",\"PeriodicalId\":6533,\"journal\":{\"name\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"22 7 1\",\"pages\":\"779-784\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2018.00124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

Web应用程序一直暴露在利用其漏洞的攻击之下。在这项工作中,我们研究了机器学习技术在利用Web应用防火墙(WAF)中的应用,WAF是一种用于检测和防止攻击的技术。我们提出了一种基于一类分类和n图分析的互补机器学习模型的方法,以增强开源和广泛使用的WAF MODSECURITY的检测和准确性。当使用OWASP核心规则集(广泛部署的基于规则的WAF技术的基线配置设置)配置时,结果很有希望并且优于MODSECURITY。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Web Application Firewalls through Anomaly Detection
Web applications are permanently being exposed to attacks that exploit their vulnerabilities. In this work we investigate the application of machine learning techniques to leverage Web Application Firewalls (WAF)s, a technology that is used to detect and prevent attacks. We put forward an approach of complementary machine learning models, based on one-class classification and n-gram analysis, to enhance the detection and accuracy capabilities of MODSECURITY, an open source and widely used WAF. The results are promising and outperform MODSECURITY when configured with the OWASP Core Rule Set, the baseline configuration setting of a widely deployed, rule-based WAF technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信