Nguimezong Nguefack Marius Borel, J. Foba-Tendo, D. M. Yufanyi, Ekane Peter Etape, Jude Namanga Eko, Lambi John Ngolui
{"title":"杨桃:一种可再生草酸来源,用于二价金属(Fe, Co, Ni, Zn和Cu)草酸盐和氧化物纳米颗粒的快速绿色合成","authors":"Nguimezong Nguefack Marius Borel, J. Foba-Tendo, D. M. Yufanyi, Ekane Peter Etape, Jude Namanga Eko, Lambi John Ngolui","doi":"10.1155/2014/767695","DOIUrl":null,"url":null,"abstract":"A green, simple, and environmentally benign synthetic approach has been utilised to obtain some bivalent metal oxalates from Averrhoa carambola juice extract, without any purification or special treatment of the juice. The main acid components (oxalic acid and ascorbic acid) of the juice were identified by HPLC technique. The effect of temperature on the purity of the product has been investigated. The as-synthesized metal oxalates were thermally decomposed at low temperatures to their respective metal oxide nanoparticles. The metal oxalates and their respective thermal decomposition products were characterized by Fourier Transform Infrared spectroscopy, X-ray diffraction analysis, and thermogravimetry.","PeriodicalId":15303,"journal":{"name":"Journal of Chemical Technology & Biotechnology","volume":"22 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Averrhoa carambola: A Renewable Source of Oxalic Acid for the Facile and Green Synthesis of Divalent Metal (Fe, Co, Ni, Zn, and Cu) Oxalates and Oxide Nanoparticles\",\"authors\":\"Nguimezong Nguefack Marius Borel, J. Foba-Tendo, D. M. Yufanyi, Ekane Peter Etape, Jude Namanga Eko, Lambi John Ngolui\",\"doi\":\"10.1155/2014/767695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A green, simple, and environmentally benign synthetic approach has been utilised to obtain some bivalent metal oxalates from Averrhoa carambola juice extract, without any purification or special treatment of the juice. The main acid components (oxalic acid and ascorbic acid) of the juice were identified by HPLC technique. The effect of temperature on the purity of the product has been investigated. The as-synthesized metal oxalates were thermally decomposed at low temperatures to their respective metal oxide nanoparticles. The metal oxalates and their respective thermal decomposition products were characterized by Fourier Transform Infrared spectroscopy, X-ray diffraction analysis, and thermogravimetry.\",\"PeriodicalId\":15303,\"journal\":{\"name\":\"Journal of Chemical Technology & Biotechnology\",\"volume\":\"22 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Technology & Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/767695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Technology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/767695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Averrhoa carambola: A Renewable Source of Oxalic Acid for the Facile and Green Synthesis of Divalent Metal (Fe, Co, Ni, Zn, and Cu) Oxalates and Oxide Nanoparticles
A green, simple, and environmentally benign synthetic approach has been utilised to obtain some bivalent metal oxalates from Averrhoa carambola juice extract, without any purification or special treatment of the juice. The main acid components (oxalic acid and ascorbic acid) of the juice were identified by HPLC technique. The effect of temperature on the purity of the product has been investigated. The as-synthesized metal oxalates were thermally decomposed at low temperatures to their respective metal oxide nanoparticles. The metal oxalates and their respective thermal decomposition products were characterized by Fourier Transform Infrared spectroscopy, X-ray diffraction analysis, and thermogravimetry.