{"title":"Hopfield网络吸引子的稳定性阈值","authors":"I. Soloviev, V. Klinshov","doi":"10.18500/0869-6632-003028","DOIUrl":null,"url":null,"abstract":"Purpose of the work is the detailed study of the attractors of the Hopfield network and their basins of attraction depending on the parameters of the system, the size of the network and the number of stored images. To characterize the basins of attraction we used the method of the so-called stability threshold, i.e., the minimum distance from an attractor to the boundary of its basin of attraction. For useful attractors, this value corresponds to the minimum distortion of the stored image, after which the system is unable to recognize it. In the result of the study it is shown that the dependence of the average stability threshold of useful attractors on the number of stored images can be nonmonotonic, due to which the stability of the network can improve when new images are memorized. An analysis of the stability thresholds allowed to estimate the maximum number of images that the network can store without fatal errors in their recognition. In this case, the stability threshold of useful attractors turns out to be close to the minimum possible value, that is, to unity. To conclude, calculation of the stability thresholds provides important information about the attraction basins of the network attractors.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"47 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability thresholds of attractors of the Hopfield network\",\"authors\":\"I. Soloviev, V. Klinshov\",\"doi\":\"10.18500/0869-6632-003028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose of the work is the detailed study of the attractors of the Hopfield network and their basins of attraction depending on the parameters of the system, the size of the network and the number of stored images. To characterize the basins of attraction we used the method of the so-called stability threshold, i.e., the minimum distance from an attractor to the boundary of its basin of attraction. For useful attractors, this value corresponds to the minimum distortion of the stored image, after which the system is unable to recognize it. In the result of the study it is shown that the dependence of the average stability threshold of useful attractors on the number of stored images can be nonmonotonic, due to which the stability of the network can improve when new images are memorized. An analysis of the stability thresholds allowed to estimate the maximum number of images that the network can store without fatal errors in their recognition. In this case, the stability threshold of useful attractors turns out to be close to the minimum possible value, that is, to unity. To conclude, calculation of the stability thresholds provides important information about the attraction basins of the network attractors.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-003028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Stability thresholds of attractors of the Hopfield network
Purpose of the work is the detailed study of the attractors of the Hopfield network and their basins of attraction depending on the parameters of the system, the size of the network and the number of stored images. To characterize the basins of attraction we used the method of the so-called stability threshold, i.e., the minimum distance from an attractor to the boundary of its basin of attraction. For useful attractors, this value corresponds to the minimum distortion of the stored image, after which the system is unable to recognize it. In the result of the study it is shown that the dependence of the average stability threshold of useful attractors on the number of stored images can be nonmonotonic, due to which the stability of the network can improve when new images are memorized. An analysis of the stability thresholds allowed to estimate the maximum number of images that the network can store without fatal errors in their recognition. In this case, the stability threshold of useful attractors turns out to be close to the minimum possible value, that is, to unity. To conclude, calculation of the stability thresholds provides important information about the attraction basins of the network attractors.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.