{"title":"柏拉图式的纠缠","authors":"Jos'e I. Latorre, Germ'an Sierra","doi":"10.26421/qic21.13-14-1","DOIUrl":null,"url":null,"abstract":"We present a construction of highly entangled states defined on the topology of a platonic solid using tensor networks based on ancillary Absolute Maximally Entangled (AME) states. We illustrate the idea using the example of a quantum state based on AME(5,2) over a dodecahedron. We analyze the entropy of such states on many different partitions, and observe that they come on integer numbers and are almost maximal. We also observe that all platonic solids accept the construction of AME states based on Reed-Solomon codes since their number of facets, vertices and edges are always a prime number plus one.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"48 1","pages":"1081-1090"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Platonic entanglement\",\"authors\":\"Jos'e I. Latorre, Germ'an Sierra\",\"doi\":\"10.26421/qic21.13-14-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a construction of highly entangled states defined on the topology of a platonic solid using tensor networks based on ancillary Absolute Maximally Entangled (AME) states. We illustrate the idea using the example of a quantum state based on AME(5,2) over a dodecahedron. We analyze the entropy of such states on many different partitions, and observe that they come on integer numbers and are almost maximal. We also observe that all platonic solids accept the construction of AME states based on Reed-Solomon codes since their number of facets, vertices and edges are always a prime number plus one.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"48 1\",\"pages\":\"1081-1090\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/qic21.13-14-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic21.13-14-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a construction of highly entangled states defined on the topology of a platonic solid using tensor networks based on ancillary Absolute Maximally Entangled (AME) states. We illustrate the idea using the example of a quantum state based on AME(5,2) over a dodecahedron. We analyze the entropy of such states on many different partitions, and observe that they come on integer numbers and are almost maximal. We also observe that all platonic solids accept the construction of AME states based on Reed-Solomon codes since their number of facets, vertices and edges are always a prime number plus one.