下降PRP共轭梯度法的全局收敛性

IF 2.5 3区 数学 Q1 MATHEMATICS, APPLIED
Min Li, Heying Feng, Jianguo Liu
{"title":"下降PRP共轭梯度法的全局收敛性","authors":"Min Li, Heying Feng, Jianguo Liu","doi":"10.1590/S1807-03022012000100004","DOIUrl":null,"url":null,"abstract":"Recently, Yu and Guan proposed a modified PRP method (called DPRP method) which can generate sufficient descent directions for the objective function. They established the global convergence of the DPRP method based on the assumption that stepsize is bounded away from zero. In this paper, without the requirement of the positive lower bound of the stepsize, we prove that the DPRP method is globally convergent with a modified strong Wolfe line search. Moreover, we establish the global convergence of the DPRP method with a Armijo-type line search. The numerical results show that the proposed algorithms are efficient. Mathematical subject classification: Primary: 90C30; Secondary: 65K05.","PeriodicalId":50649,"journal":{"name":"Computational & Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The global convergence of a descent PRP conjugate gradient method\",\"authors\":\"Min Li, Heying Feng, Jianguo Liu\",\"doi\":\"10.1590/S1807-03022012000100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Yu and Guan proposed a modified PRP method (called DPRP method) which can generate sufficient descent directions for the objective function. They established the global convergence of the DPRP method based on the assumption that stepsize is bounded away from zero. In this paper, without the requirement of the positive lower bound of the stepsize, we prove that the DPRP method is globally convergent with a modified strong Wolfe line search. Moreover, we establish the global convergence of the DPRP method with a Armijo-type line search. The numerical results show that the proposed algorithms are efficient. Mathematical subject classification: Primary: 90C30; Secondary: 65K05.\",\"PeriodicalId\":50649,\"journal\":{\"name\":\"Computational & Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational & Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1590/S1807-03022012000100004\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1590/S1807-03022012000100004","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

最近,Yu和Guan提出了一种改进的PRP方法(称为DPRP方法),该方法可以为目标函数生成足够的下降方向。他们基于步长有界远离零的假设,建立了DPRP方法的全局收敛性。本文在不要求步长为正下界的情况下,用改进的强Wolfe线搜索证明了DPRP方法是全局收敛的。此外,我们还利用armijo型线搜索建立了DPRP方法的全局收敛性。数值结果表明,该算法是有效的。数学学科分类:初级:90C30;二级:65 k05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The global convergence of a descent PRP conjugate gradient method
Recently, Yu and Guan proposed a modified PRP method (called DPRP method) which can generate sufficient descent directions for the objective function. They established the global convergence of the DPRP method based on the assumption that stepsize is bounded away from zero. In this paper, without the requirement of the positive lower bound of the stepsize, we prove that the DPRP method is globally convergent with a modified strong Wolfe line search. Moreover, we establish the global convergence of the DPRP method with a Armijo-type line search. The numerical results show that the proposed algorithms are efficient. Mathematical subject classification: Primary: 90C30; Secondary: 65K05.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational & Applied Mathematics
Computational & Applied Mathematics Mathematics-Computational Mathematics
CiteScore
4.50
自引率
11.50%
发文量
352
审稿时长
>12 weeks
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信