{"title":"英西机器翻译中(语法)性别刻板印象的加剧","authors":"Nerea Ondoño-Soler, M. Forcada","doi":"10.5565/rev/tradumatica.307","DOIUrl":null,"url":null,"abstract":"The information required to select grammatical gender in machine translation of isolated sentences for gender-marking languages is frequently missing or difficult to extract. Our text-centric, black-box study demonstrates how the gender distribution of the training set is distorted at the output. Human evaluation reveals that gender clues are frequently absent from the source, resulting in stereotyped translations.","PeriodicalId":42402,"journal":{"name":"Tradumatica-Traduccio i Tecnologies de la Informacio i la Comunicacio","volume":"17 1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Exacerbation of (Grammatical) Gender Stereotypes in English–Spanish Machine Translation\",\"authors\":\"Nerea Ondoño-Soler, M. Forcada\",\"doi\":\"10.5565/rev/tradumatica.307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information required to select grammatical gender in machine translation of isolated sentences for gender-marking languages is frequently missing or difficult to extract. Our text-centric, black-box study demonstrates how the gender distribution of the training set is distorted at the output. Human evaluation reveals that gender clues are frequently absent from the source, resulting in stereotyped translations.\",\"PeriodicalId\":42402,\"journal\":{\"name\":\"Tradumatica-Traduccio i Tecnologies de la Informacio i la Comunicacio\",\"volume\":\"17 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tradumatica-Traduccio i Tecnologies de la Informacio i la Comunicacio\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5565/rev/tradumatica.307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tradumatica-Traduccio i Tecnologies de la Informacio i la Comunicacio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/rev/tradumatica.307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"LINGUISTICS","Score":null,"Total":0}
The Exacerbation of (Grammatical) Gender Stereotypes in English–Spanish Machine Translation
The information required to select grammatical gender in machine translation of isolated sentences for gender-marking languages is frequently missing or difficult to extract. Our text-centric, black-box study demonstrates how the gender distribution of the training set is distorted at the output. Human evaluation reveals that gender clues are frequently absent from the source, resulting in stereotyped translations.