用于对象分割的深度学习形状先验

Fei Chen, Huimin Yu, Roland Hu, Xunxun Zeng
{"title":"用于对象分割的深度学习形状先验","authors":"Fei Chen, Huimin Yu, Roland Hu, Xunxun Zeng","doi":"10.1109/CVPR.2013.244","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new shape-driven approach for object segmentation. Given a training set of shapes, we first use deep Boltzmann machine to learn the hierarchical architecture of shape priors. This learned hierarchical architecture is then used to model shape variations of global and local structures in an energetic form. Finally, it is applied to data-driven variational methods to perform object extraction of corrupted data based on shape probabilistic representation. Experiments demonstrate that our model can be applied to dataset of arbitrary prior shapes, and can cope with image noise and clutter, as well as partial occlusions.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"125 1","pages":"1870-1877"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Deep Learning Shape Priors for Object Segmentation\",\"authors\":\"Fei Chen, Huimin Yu, Roland Hu, Xunxun Zeng\",\"doi\":\"10.1109/CVPR.2013.244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a new shape-driven approach for object segmentation. Given a training set of shapes, we first use deep Boltzmann machine to learn the hierarchical architecture of shape priors. This learned hierarchical architecture is then used to model shape variations of global and local structures in an energetic form. Finally, it is applied to data-driven variational methods to perform object extraction of corrupted data based on shape probabilistic representation. Experiments demonstrate that our model can be applied to dataset of arbitrary prior shapes, and can cope with image noise and clutter, as well as partial occlusions.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"125 1\",\"pages\":\"1870-1877\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

摘要

本文提出了一种新的形状驱动的目标分割方法。给定一个形状训练集,我们首先使用深度玻尔兹曼机学习形状先验的层次结构。然后使用这种学习到的分层结构以能量形式对全局和局部结构的形状变化进行建模。最后,将其应用于数据驱动的变分方法中,基于形状概率表示对损坏数据进行对象提取。实验表明,该模型可以应用于任意先验形状的数据集,并且可以处理图像噪声和杂波以及部分遮挡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Shape Priors for Object Segmentation
In this paper we introduce a new shape-driven approach for object segmentation. Given a training set of shapes, we first use deep Boltzmann machine to learn the hierarchical architecture of shape priors. This learned hierarchical architecture is then used to model shape variations of global and local structures in an energetic form. Finally, it is applied to data-driven variational methods to perform object extraction of corrupted data based on shape probabilistic representation. Experiments demonstrate that our model can be applied to dataset of arbitrary prior shapes, and can cope with image noise and clutter, as well as partial occlusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信