纯微应力耗散过程对平面应变梯度塑性问题的影响

IF 0.7 Q4 MECHANICS
A. Borokinni, O. Fadodun, A. Akinola
{"title":"纯微应力耗散过程对平面应变梯度塑性问题的影响","authors":"A. Borokinni, O. Fadodun, A. Akinola","doi":"10.2298/TAM171017002B","DOIUrl":null,"url":null,"abstract":". This article considers a plane strain gradient plasticity theory of the Gurtin–Anand model [M. Gurtin, L. Anand, A theory of strain gra- dient plasticity for isotropic, plastically irrotational materials Part I: Small deformations , J. Mech. Phys. Solids 53 (2005), 1624–1649] for an isotropic material undergoing small deformation in the absence of plastic spin. It is assumed that the system of microstresses is purely dissipative, so that the free energy reduces to a function of the elastic strain, while the microstresses are only related to the plastic strain rate and gradient of the plastic strain rate via the constitutive relations. The plane strain problem of the Gurtin–Anand model for a purely dissipative process gives rise to elastic incompressibility. A weak formulation of the flow rule is derived, making the plane strain problem suitable for finite element implementation.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effect of a purely dissipative process of microstresses on plane strain gradient plasticity problems\",\"authors\":\"A. Borokinni, O. Fadodun, A. Akinola\",\"doi\":\"10.2298/TAM171017002B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This article considers a plane strain gradient plasticity theory of the Gurtin–Anand model [M. Gurtin, L. Anand, A theory of strain gra- dient plasticity for isotropic, plastically irrotational materials Part I: Small deformations , J. Mech. Phys. Solids 53 (2005), 1624–1649] for an isotropic material undergoing small deformation in the absence of plastic spin. It is assumed that the system of microstresses is purely dissipative, so that the free energy reduces to a function of the elastic strain, while the microstresses are only related to the plastic strain rate and gradient of the plastic strain rate via the constitutive relations. The plane strain problem of the Gurtin–Anand model for a purely dissipative process gives rise to elastic incompressibility. A weak formulation of the flow rule is derived, making the plane strain problem suitable for finite element implementation.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/TAM171017002B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM171017002B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

. 本文考虑Gurtin-Anand模型的平面应变梯度塑性理论[M]。张建军,张建军,张建军,等。各向同性非旋转材料的应变梯度塑性理论。第1部分:小变形。力学学报。理论物理。固体53(2005),1624-1649]在没有塑性自旋的情况下经历小变形的各向同性材料。假设微应力系统是纯耗散的,使自由能降为弹性应变的函数,而微应力仅通过本构关系与塑性应变率和塑性应变率梯度有关。纯耗散过程的Gurtin-Anand模型的平面应变问题引起了弹性不可压缩性。导出了流动规律的弱表达式,使平面应变问题适合于有限元求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effect of a purely dissipative process of microstresses on plane strain gradient plasticity problems
. This article considers a plane strain gradient plasticity theory of the Gurtin–Anand model [M. Gurtin, L. Anand, A theory of strain gra- dient plasticity for isotropic, plastically irrotational materials Part I: Small deformations , J. Mech. Phys. Solids 53 (2005), 1624–1649] for an isotropic material undergoing small deformation in the absence of plastic spin. It is assumed that the system of microstresses is purely dissipative, so that the free energy reduces to a function of the elastic strain, while the microstresses are only related to the plastic strain rate and gradient of the plastic strain rate via the constitutive relations. The plane strain problem of the Gurtin–Anand model for a purely dissipative process gives rise to elastic incompressibility. A weak formulation of the flow rule is derived, making the plane strain problem suitable for finite element implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信