锋利的估计几何刚度第一海森堡组

D. V. Isangulova
{"title":"锋利的估计几何刚度第一海森堡组","authors":"D. V. Isangulova","doi":"10.31857/s0869-56524886590-594","DOIUrl":null,"url":null,"abstract":"We prove quantitative stability of isometries on the first Heisenberg group with sub-Riemannian geometry: every (1 + )-quasi-isometry of the John domain of the Heisenberg group is close to some isometry with order of closeness in the uniform norm and with the order of closeness+ in the Sobolev norm. An example demonstrating the asymptotic sharpness of the results is given.","PeriodicalId":24047,"journal":{"name":"Доклады Академии наук","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp estimates of the geometric rigidity on the first Heisenberg group\",\"authors\":\"D. V. Isangulova\",\"doi\":\"10.31857/s0869-56524886590-594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove quantitative stability of isometries on the first Heisenberg group with sub-Riemannian geometry: every (1 + )-quasi-isometry of the John domain of the Heisenberg group is close to some isometry with order of closeness in the uniform norm and with the order of closeness+ in the Sobolev norm. An example demonstrating the asymptotic sharpness of the results is given.\",\"PeriodicalId\":24047,\"journal\":{\"name\":\"Доклады Академии наук\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Доклады Академии наук\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31857/s0869-56524886590-594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Доклады Академии наук","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/s0869-56524886590-594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用亚黎曼几何证明了第一Heisenberg群上等距的定量稳定性:Heisenberg群的John域的每一个(1 +)-拟等距在一致范数和Sobolev范数上都接近于某个接近阶的等距。最后给出了一个例子,证明了结果的渐近锐度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp estimates of the geometric rigidity on the first Heisenberg group
We prove quantitative stability of isometries on the first Heisenberg group with sub-Riemannian geometry: every (1 + )-quasi-isometry of the John domain of the Heisenberg group is close to some isometry with order of closeness in the uniform norm and with the order of closeness+ in the Sobolev norm. An example demonstrating the asymptotic sharpness of the results is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信