高分辨率CGCM模拟阿古拉斯回流区的锋生

Shun Ohishi, T. Tozuka, M. Cronin
{"title":"高分辨率CGCM模拟阿古拉斯回流区的锋生","authors":"Shun Ohishi, T. Tozuka, M. Cronin","doi":"10.1175/JPO-D-17-0038.1","DOIUrl":null,"url":null,"abstract":"AbstractDetailed mechanisms for frontogenesis/frontolysis of the sea surface temperature (SST) front in the Agulhas Return Current (ARC) region are investigated using outputs from a high-resolution coupled general circulation model. The SST front is maintained throughout the year through an approximate balance between frontolysis by surface heat flux and frontogenesis by horizontal advection. Although a southward (northward) cross-isotherm flow on the northern (southern) side of the front is weaker than a strong eastward along-isotherm current in the frontal region, this cross-isotherm confluent flow advects warmer (cooler) temperature toward the SST front north (south) of the front and acts as the dominant frontogenesis mechanism. In addition, stronger (weaker) frontogenesis in austral summer (winter) is attributed to the stronger (weaker) cross-isotherm confluence, which may be linked to seasonal variations of the Agulhas Current, ARC, and Antarctic Circumpolar Current. On the other hand, the contributi...","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Frontogenesis in the Agulhas Return Current region simulated by a high-resolution CGCM\",\"authors\":\"Shun Ohishi, T. Tozuka, M. Cronin\",\"doi\":\"10.1175/JPO-D-17-0038.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractDetailed mechanisms for frontogenesis/frontolysis of the sea surface temperature (SST) front in the Agulhas Return Current (ARC) region are investigated using outputs from a high-resolution coupled general circulation model. The SST front is maintained throughout the year through an approximate balance between frontolysis by surface heat flux and frontogenesis by horizontal advection. Although a southward (northward) cross-isotherm flow on the northern (southern) side of the front is weaker than a strong eastward along-isotherm current in the frontal region, this cross-isotherm confluent flow advects warmer (cooler) temperature toward the SST front north (south) of the front and acts as the dominant frontogenesis mechanism. In addition, stronger (weaker) frontogenesis in austral summer (winter) is attributed to the stronger (weaker) cross-isotherm confluence, which may be linked to seasonal variations of the Agulhas Current, ARC, and Antarctic Circumpolar Current. On the other hand, the contributi...\",\"PeriodicalId\":14836,\"journal\":{\"name\":\"Japan Geoscience Union\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Geoscience Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/JPO-D-17-0038.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Geoscience Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JPO-D-17-0038.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

摘要利用高分辨率大气环流耦合模式,研究了阿古拉斯环流(ARC)区域海温锋生/锋解的详细机制。海温锋是通过地表热通量的锋解和水平平流的锋生的近似平衡来维持全年的。尽管锋面北(南)侧向南(北)方向的横贯等温线流弱于锋面区域的强向东等温线流,但这种横贯等温线合流将较暖(冷)的温度平流向锋面北(南)方向的海温锋面,成为锋面形成的主导机制。此外,夏季(冬季)的强(弱)锋生归因于强(弱)跨等温线合流,这可能与阿古拉斯流、ARC和南极环极流的季节变化有关。另一方面,……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frontogenesis in the Agulhas Return Current region simulated by a high-resolution CGCM
AbstractDetailed mechanisms for frontogenesis/frontolysis of the sea surface temperature (SST) front in the Agulhas Return Current (ARC) region are investigated using outputs from a high-resolution coupled general circulation model. The SST front is maintained throughout the year through an approximate balance between frontolysis by surface heat flux and frontogenesis by horizontal advection. Although a southward (northward) cross-isotherm flow on the northern (southern) side of the front is weaker than a strong eastward along-isotherm current in the frontal region, this cross-isotherm confluent flow advects warmer (cooler) temperature toward the SST front north (south) of the front and acts as the dominant frontogenesis mechanism. In addition, stronger (weaker) frontogenesis in austral summer (winter) is attributed to the stronger (weaker) cross-isotherm confluence, which may be linked to seasonal variations of the Agulhas Current, ARC, and Antarctic Circumpolar Current. On the other hand, the contributi...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信