未喷丸和激光冲击喷丸HSLA钢棘轮变形时的显微组织-晶体织构和亚结构演变

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
P. Dwivedi, R. Vinjamuri, K. Dutta
{"title":"未喷丸和激光冲击喷丸HSLA钢棘轮变形时的显微组织-晶体织构和亚结构演变","authors":"P. Dwivedi, R. Vinjamuri, K. Dutta","doi":"10.1080/14786435.2023.2246019","DOIUrl":null,"url":null,"abstract":"ABSTRACT Uniaxial ratcheting behaviours associated with microstructural development of unpeened and laser shock peened ASTM A 588 Grade D High Strength Low Alloy (HSLA) steel were studied in this investigation. The mechanism of plastic deformation and crystallographic texture evolution during ratcheting was also studied. For this, the primary experimental works involved were stress-controlled ratcheting fatigue tests (on unpeened/laser-peened specimens) at room temperature. Followed by this, microstructure and texture evolution on the surfaces and/or cross sections of the deformed specimens, using electron back scattered diffraction (EBSD) were studied in detail. Additionally, the substructural evolution of some selected samples was also studied using transmission electron microscopy (TEM). The results indicated that the average grain size of all the unpeened ratcheted specimens was marginally reduced after fatigue tests. The laser-peened specimen, however, showed a marginal increase in average grain size after ratcheting. Continuous dynamic recovery and recrystallisation (CDRR) during ratcheting was thought to be the cause of the observed reduction in average grain size in unpeened specimens, whereas continuous dynamic recrystallisation (CDRX) was believed to be the controlling factor for marginal accretion of grain size in laser-peened specimens. The plastic deformation of investigated steel was qualitatively explained by the observed dislocation patterns and their evolution.","PeriodicalId":19856,"journal":{"name":"Philosophical Magazine","volume":"41 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure-crystallographic texture and substructure evolution in unpeened and laser shock peened HSLA steel upon ratcheting deformation\",\"authors\":\"P. Dwivedi, R. Vinjamuri, K. Dutta\",\"doi\":\"10.1080/14786435.2023.2246019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Uniaxial ratcheting behaviours associated with microstructural development of unpeened and laser shock peened ASTM A 588 Grade D High Strength Low Alloy (HSLA) steel were studied in this investigation. The mechanism of plastic deformation and crystallographic texture evolution during ratcheting was also studied. For this, the primary experimental works involved were stress-controlled ratcheting fatigue tests (on unpeened/laser-peened specimens) at room temperature. Followed by this, microstructure and texture evolution on the surfaces and/or cross sections of the deformed specimens, using electron back scattered diffraction (EBSD) were studied in detail. Additionally, the substructural evolution of some selected samples was also studied using transmission electron microscopy (TEM). The results indicated that the average grain size of all the unpeened ratcheted specimens was marginally reduced after fatigue tests. The laser-peened specimen, however, showed a marginal increase in average grain size after ratcheting. Continuous dynamic recovery and recrystallisation (CDRR) during ratcheting was thought to be the cause of the observed reduction in average grain size in unpeened specimens, whereas continuous dynamic recrystallisation (CDRX) was believed to be the controlling factor for marginal accretion of grain size in laser-peened specimens. The plastic deformation of investigated steel was qualitatively explained by the observed dislocation patterns and their evolution.\",\"PeriodicalId\":19856,\"journal\":{\"name\":\"Philosophical Magazine\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14786435.2023.2246019\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14786435.2023.2246019","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructure-crystallographic texture and substructure evolution in unpeened and laser shock peened HSLA steel upon ratcheting deformation
ABSTRACT Uniaxial ratcheting behaviours associated with microstructural development of unpeened and laser shock peened ASTM A 588 Grade D High Strength Low Alloy (HSLA) steel were studied in this investigation. The mechanism of plastic deformation and crystallographic texture evolution during ratcheting was also studied. For this, the primary experimental works involved were stress-controlled ratcheting fatigue tests (on unpeened/laser-peened specimens) at room temperature. Followed by this, microstructure and texture evolution on the surfaces and/or cross sections of the deformed specimens, using electron back scattered diffraction (EBSD) were studied in detail. Additionally, the substructural evolution of some selected samples was also studied using transmission electron microscopy (TEM). The results indicated that the average grain size of all the unpeened ratcheted specimens was marginally reduced after fatigue tests. The laser-peened specimen, however, showed a marginal increase in average grain size after ratcheting. Continuous dynamic recovery and recrystallisation (CDRR) during ratcheting was thought to be the cause of the observed reduction in average grain size in unpeened specimens, whereas continuous dynamic recrystallisation (CDRX) was believed to be the controlling factor for marginal accretion of grain size in laser-peened specimens. The plastic deformation of investigated steel was qualitatively explained by the observed dislocation patterns and their evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Philosophical Magazine
Philosophical Magazine 工程技术-材料科学:综合
自引率
0.00%
发文量
93
审稿时长
4.7 months
期刊介绍: The Editors of Philosophical Magazine consider for publication contributions describing original experimental and theoretical results, computational simulations and concepts relating to the structure and properties of condensed matter. The submission of papers on novel measurements, phases, phenomena, and new types of material is encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信