{"title":"基于词嵌入的多领域评论情感分析","authors":"M. Venu Gopalachari, Sangeeta Gupta, Salakapuri Rakesh, Dharmana Jayaram, Pulipati Venkateswara Rao","doi":"10.1515/jisys-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract The finest resource for consumers to evaluate products is online product reviews, and finding such reviews that are accurate and helpful can be difficult. These reviews may sometimes be corrupted, biased, contradictory, or lacking in detail. This opens the door for customer-focused review analysis methods. A method called “Multi-Domain Keyword Extraction using Word Vectors” aims to streamline the customer experience by giving them reviews from several websites together with in-depth assessments of the evaluations. Using the specific model number of the product, inputs are continuously grabbed from different e-commerce websites. Aspects and key phrases in the reviews are properly identified using machine learning, and the average sentiment for each keyword is calculated using context-based sentiment analysis. To precisely discover the keywords in massive texts, word embedding data will be analyzed by machine learning techniques. A unique methodology developed to locate trustworthy reviews considers several criteria that determine what makes a review credible. The experiments on real-time data sets showed better results compared to the existing traditional models.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"20 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspect-based sentiment analysis on multi-domain reviews through word embedding\",\"authors\":\"M. Venu Gopalachari, Sangeeta Gupta, Salakapuri Rakesh, Dharmana Jayaram, Pulipati Venkateswara Rao\",\"doi\":\"10.1515/jisys-2023-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The finest resource for consumers to evaluate products is online product reviews, and finding such reviews that are accurate and helpful can be difficult. These reviews may sometimes be corrupted, biased, contradictory, or lacking in detail. This opens the door for customer-focused review analysis methods. A method called “Multi-Domain Keyword Extraction using Word Vectors” aims to streamline the customer experience by giving them reviews from several websites together with in-depth assessments of the evaluations. Using the specific model number of the product, inputs are continuously grabbed from different e-commerce websites. Aspects and key phrases in the reviews are properly identified using machine learning, and the average sentiment for each keyword is calculated using context-based sentiment analysis. To precisely discover the keywords in massive texts, word embedding data will be analyzed by machine learning techniques. A unique methodology developed to locate trustworthy reviews considers several criteria that determine what makes a review credible. The experiments on real-time data sets showed better results compared to the existing traditional models.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2023-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Aspect-based sentiment analysis on multi-domain reviews through word embedding
Abstract The finest resource for consumers to evaluate products is online product reviews, and finding such reviews that are accurate and helpful can be difficult. These reviews may sometimes be corrupted, biased, contradictory, or lacking in detail. This opens the door for customer-focused review analysis methods. A method called “Multi-Domain Keyword Extraction using Word Vectors” aims to streamline the customer experience by giving them reviews from several websites together with in-depth assessments of the evaluations. Using the specific model number of the product, inputs are continuously grabbed from different e-commerce websites. Aspects and key phrases in the reviews are properly identified using machine learning, and the average sentiment for each keyword is calculated using context-based sentiment analysis. To precisely discover the keywords in massive texts, word embedding data will be analyzed by machine learning techniques. A unique methodology developed to locate trustworthy reviews considers several criteria that determine what makes a review credible. The experiments on real-time data sets showed better results compared to the existing traditional models.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.